Let's practice

Algebra Level 2

Let a a , b b and c c be digits such that ( 100 a + 10 b + c ) ( a + b + c ) = 2005 (100a+10b+c)(a+b+c)=2005 . What is a a ?

3 0 2 4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 21, 2018

( 100 a + 10 b + c ) ( a + b + c ) = 2005 ( 99 a + 9 b + a + b + c ) ( a + b + c ) = 2005 Let d = a + b + c ( 99 a + 9 b + d ) d = 5 401 Both factors of 2005 are primes. ( 99 a + 9 b + 5 ) 5 = 5 401 We can assume d = 5 and... 99 a + 9 b + 5 = 401 Substract both sides by 5. 99 a + 9 b = 396 Divide both sides by 9. 11 a + b = 44 a = 4 The only possible solution. \begin{aligned} (100a+10b+c)(a+b+c) & = 2005 \\ (99a+9b + {\color{#3D99F6}a + b +c})({\color{#3D99F6}a + b +c}) & = 2005 & \small \color{#3D99F6} \text{Let }d = a+b+c \\ {\color{#D61F06}(99a+9b + {\color{#3D99F6}d})}{\color{#3D99F6}d} & = {\color{#3D99F6}5}\cdot\color{#D61F06} 401 & \small \color{#3D99F6} \text{Both factors of 2005 are primes.} \\ {\color{#D61F06}(99a+9b + {\color{#3D99F6}5})}{\color{#3D99F6}5} & = {\color{#3D99F6}5}\cdot\color{#D61F06} 401 & \small \color{#3D99F6} \text{We can assume }d=5 \text{ and...} \\ 99a+9b + 5 & = 401& \small \color{#3D99F6} \text{Substract both sides by 5.} \\ 99a+9b & = 396 & \small \color{#3D99F6} \text{Divide both sides by 9.} \\ 11a + b & = 44 \\ \implies a & = \boxed{4} & \small \color{#3D99F6} \text{The only possible solution.} \end{aligned}

We can observe that both the quantities are integers. By prime factorisation of, 2005=5.401.(a,b,c)=(4,0,1) so it hold good. So, the answer is 4

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...