Let's progress Geometrically!

Algebra Level 4

Suppose S S denotes sum to infinity and S n S_n denotes the sum of n n terms of the series 1 + 1 2 + 1 4 + 1 8 + 1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\cdots such that S S n < 1 1000 S-S_n<\dfrac{1}{1000} , then what will be the least value of n n ?

8 10 11 9

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Zee Ell
Nov 7, 2016

We can calculate S and Sn as sums of a geometric progression (to infinity and to n, respectively):

S = 1 1 1 2 = 2 S = \frac {1}{1- \frac{1}{2} } = 2

S n = 1 ( 1 2 ) n 1 1 2 = 2 ( 1 2 ) n 1 S_n = \frac { 1 - ( \frac {1}{2} ) ^n }{1- \frac{1}{2} } = 2 - ( \frac {1}{2} ) ^{n-1}

S S n < 1 1000 S - S_n < \frac {1}{1000}

2 ( 2 ( 1 2 ) n 1 ) < 1 1000 2 - (2 - ( \frac {1}{2} ) ^{n-1}) < \frac {1}{1000}

( 1 2 ) n 1 < 1 1000 ( \frac {1}{2} ) ^{n-1} < \frac {1}{1000}

1000 < 2 n 1 1000 < 2^{n-1}

l o g 2 ( 1000 ) < n 1 log_2(1000) < n - 1

9.965784 < n 1 9.965784 < n -1

10.965784 < n 10.965784 < n

Hence, our answer should be: 11 \text {Hence, our answer should be: } \boxed {11}

Good one! @Zee Ell

Skanda Prasad - 4 years, 7 months ago
Mahdi Raza
Apr 18, 2020

S = 1 1 1 2 2 S n = 1 ( 1 / 2 ) n 1 1 / 2 2 ( 1 2 ) n 1 \begin{aligned} S = \frac{1}{1-\frac{1}{2}} &\implies \boxed{2} \\ \\ S_{n} = \frac{1 - (1/2)^n}{1-1/2} &\implies \boxed{2- \bigg(\frac{1}{2}\bigg)^{n-1}} \end{aligned}


S S n < 1 1000 S S n = 2 ( 2 ( 1 2 ) n 1 ) ( 1 2 ) n 1 < 1 1000 1 2 n < 1 2000 2 n > 2000 n > 10.96 n = 11 \begin{aligned} S - S_{n} & < \frac{1}{1000} \\ S - S_{n} &= 2 - \bigg(2- \bigg(\frac{1}{2}\bigg)^{n-1}\bigg) \\ \bigg(\frac{1}{2}\bigg)^{n-1} & < \frac{1}{1000} \\ \frac{1}{2^n} &< \frac{1}{2000} \\ 2^n &> 2000 \\ n &> 10.96 \\ n &= \boxed{11} \end{aligned}

Edwin Gray
Feb 21, 2019

S = 2, S n = [(2^n) -1]/(2^(n - 1))), S - S n = 1/(2^(n - 1)). If this is less than 1/1000, then 2^(n - 1) = 1024, n - 1 = 10, n = 11.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...