Let's salute cos 2

Geometry Level 4

( 1 + cos π 10 ) ( 1 + cos 3 π 10 ) ( 1 + cos 7 π 10 ) ( 1 + cos 9 π 10 ) \left(1+\cos \dfrac{\pi}{10}\right) \left(1+\cos \dfrac{3\pi}{10}\right) \left(1+\cos \dfrac{7\pi}{10}\right) \left(1+\cos \dfrac{9\pi}{10}\right)

Find the reciprocal of the value of the expression above.


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let P P be the expression, then we have:

P = ( 1 + cos π 10 ) ( 1 + cos 3 π 10 ) ( 1 + cos 7 π 10 ) ( 1 + cos 9 π 10 ) [ cos k π 10 = cos ( 10 k π 10 ) ] = ( 1 + cos π 10 ) ( 1 + cos 3 π 10 ) ( 1 cos 3 π 10 ) ( 1 cos π 10 ) = ( 1 cos 2 π 10 ) ( 1 cos 2 3 π 10 ) = sin 2 π 10 sin 2 3 π 10 = 1 4 ( 1 cos π 5 ) ( 1 cos 3 π 5 ) [ cos π 5 + cos 3 π 5 = 1 2 ] = 1 4 ( 1 cos π 5 ) ( 1 [ 1 2 cos π 5 ] ) = 1 8 ( 1 cos π 5 ) ( 1 + 2 cos π 5 ) = 1 8 ( 1 + cos π 5 2 cos 2 π 5 ) [ 2 cos 2 π 5 1 = cos 2 π 5 ] = 1 8 ( cos π 5 cos 2 π 5 ) [ cos k π 5 = cos ( 5 k π 5 ) ] = 1 8 ( cos π 5 + cos 3 π 5 ) [ cos π 5 + cos 3 π 5 = 1 2 ] = 1 8 ( 1 2 ) = 1 16 1 P = 16 \begin{aligned} P & = \left(1 + \cos \frac{\pi}{10} \right) \left(1 + \cos \frac{3\pi}{10} \right) \left(1 \color{#3D99F6}{+ \cos \frac{7\pi}{10}} \right) \left(1 \color{#3D99F6}{+ \cos \frac{9\pi}{10}} \right) \quad \quad \small \color{#3D99F6} {\left[\cos \frac{k\pi}{10} = -\cos \left(\frac{10-k\pi}{10}\right) \right]} \\ & = \left(1 + \cos \frac{\pi}{10} \right) \left(1 + \cos \frac{3\pi}{10} \right) \left(1 \color{#3D99F6}{- \cos \frac{3\pi}{10}} \right) \left(1 \color{#3D99F6}{- \cos \frac{\pi}{10}} \right) \\ & = \left(1 - \cos^2 \frac{\pi}{10} \right) \left(1 - \cos^2 \frac{3\pi}{10} \right) \\ & = \sin^2 \frac{\pi}{10} \sin^2 \frac{3\pi}{10} \\ & = \frac{1}{4} \left(1 - \cos \frac{\pi}{5} \right) \left(1 - \color{#3D99F6}{\cos \frac{3\pi}{5}} \right) \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \small \color{#3D99F6} {\left[ \cos \frac{\pi}{5} + \cos \frac{3\pi}{5} = \frac{1}{2}\right]} \\ & = \frac{1}{4} \left(1 - \cos \frac{\pi}{5} \right) \left(1 - \color{#3D99F6}{\left[ \frac{1}{2} - \cos \frac{\pi}{5} \right]} \right) \\ & = \frac{1}{8} \left(1 - \cos \frac{\pi}{5} \right) \left(1 + 2 \cos \frac{\pi}{5} \right) \\ & = \frac{1}{8} \left(1 + \cos \frac{\pi}{5} - \color{#3D99F6}{2 \cos^2 \frac{\pi}{5}} \right) \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \small \color{#3D99F6} {\left[ 2 \cos^2 \frac{\pi}{5} - 1 = \cos \frac{2\pi}{5} \right]} \\ & = \frac{1}{8} \left( \cos \frac{\pi}{5} \color{#3D99F6}{-\cos \frac{2\pi}{5}} \right) \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \small \color{#3D99F6} {\left[ \cos \frac{k\pi}{5} = - \cos \left(\frac{5-k\pi}{5}\right) \right]} \\ & = \frac{1}{8} \left( \cos \frac{\pi}{5} \color{#3D99F6}{+ \cos \frac{3\pi}{5}} \right) \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \small \color{#3D99F6} {\left[ \cos \frac{\pi}{5} + \cos \frac{3\pi}{5} = \frac{1}{2}\right]} \\ & = \frac{1}{8} \left( \frac{1}{2} \right) = \frac{1}{16} \\ & \\ \Rightarrow \frac{1}{P} & = \boxed{16} \end{aligned}

You can simplify your work on your third line:

= sin 2 ( π / 5 ) sin 2 ( 3 π / 5 ) = 1 4 ( 2 sin ( 3 π / 5 ) sin ( π / 5 ) ) 2 = 1 4 ( cos ( 2 π / 5 ) cos ( π / 5 ) ) 2 = 1 4 ( cos ( 2 π / 5 ) + cos ( 4 π / 5 ) ) 2 = 1 4 ( 1 2 ) 2 = 1 16 \begin{aligned} \ldots &=& \sin^2 (\pi/5) \sin^2(3\pi/5) \\ &=& \frac14 (-2\sin(3\pi/5) \sin(\pi/5) )^2 \\ &=& \frac14 ( \cos(2\pi/5) - \cos(\pi/5) )^2 \\ & =& \frac14 ( \cos(2\pi/5) + \cos(4\pi/5) )^2 \\ & =& \frac14 \cdot \left( -\frac12\right)^2 = \frac1{16} \end{aligned}

Great solution by the way!

Pi Han Goh - 5 years, 6 months ago

Could you explain this please? cos π 5 + cos 3 π 5 = 1 2 \cos \frac\pi5 + \cos \frac{3\pi}5 = \frac12

Stewart Gordon - 5 years, 8 months ago

Log in to reply

Check out my note here .

In general, we have:

k = 1 n 2 cos ( 2 k 1 ) π n = 1 2 k = 1 n 2 cos 2 k π n = 1 2 \displaystyle \sum_{k=1}^{\lfloor \frac{n}{2} \rfloor} \cos{\frac{(2k-1)\pi}{n}} = \frac{1}{2} \\ \sum_{k=1}^{\lfloor \frac{n}{2} \rfloor} \cos{\frac{2k\pi}{n}} = -\frac{1}{2}

where n n is an odd integer.

Chew-Seong Cheong - 5 years, 8 months ago
Pi Han Goh
Nov 27, 2015

Consider the equation cos ( 5 x ) = 0 \cos(5x) = 0 , it has roots of 5 x = π 2 , 3 π 2 , 5 π 2 , 7 π 2 , 9 π 2 5x = \frac{\pi}{2},\frac{3\pi}{2},\frac{5\pi}{2},\frac{7\pi}{2},\frac{9\pi}{2} . Equivalently, it has roots of x = π 10 , 3 π 10 , 5 π 10 , 7 π 10 , 9 π 10 x = \frac{\pi}{10},\frac{3\pi}{10},\frac{5\pi}{10},\frac{7\pi}{10},\frac{9\pi}{10} .

By quintuple angle formula,

0 = cos ( 5 x ) = 16 cos 5 ( x ) 20 cos 3 ( x ) + 5 cos ( x ) 0 = \cos(5x) = 16\cos^5(x) - 20\cos^3(x) + 5\cos(x)

has roots x = π 10 , 3 π 10 , 5 π 10 , 7 π 10 , 9 π 10 x = \frac{\pi}{10},\frac{3\pi}{10},\frac{5\pi}{10},\frac{7\pi}{10},\frac{9\pi}{10} .

For simplicity sake, let y = cos ( x ) y = \cos(x) , then the equation

16 y 5 20 y 3 + 5 y = 0 16y^5 - 20y^3 + 5y = 0

has roots y = cos ( π 10 ) , cos ( 3 π 10 ) , cos ( 5 π 10 ) , cos ( 7 π 10 ) , cos ( 9 π 10 ) y = \cos\left(\frac{\pi}{10} \right), \cos\left(\frac{3\pi}{10}\right), \cos\left(\frac{5\pi}{10}\right), \cos\left( \frac{7\pi}{10}\right),\cos\left(\frac{9\pi}{10}\right) .

Let y = Y 1 y = Y - 1 , then the equation

16 ( Y 1 ) 5 20 ( Y 1 ) 3 + 5 ( Y 1 ) = 0 16(Y-1)^5 - 20(Y-1)^3 + 5(Y-1) = 0

has roots Y = 1 + cos ( π 10 ) , 1 + cos ( 3 π 10 ) , 1 + cos ( 5 π 10 ) , 1 + cos ( 7 π 10 ) , 1 + cos ( 9 π 10 ) Y = 1+ \cos\left(\frac{\pi}{10} \right),1+ \cos\left(\frac{3\pi}{10}\right), 1+\cos\left(\frac{5\pi}{10}\right),1+ \cos\left( \frac{7\pi}{10}\right),1+\cos\left(\frac{9\pi}{10}\right) .

By Vieta's formula,

[ 1 + cos ( π 10 ) ] × [ 1 + cos ( 3 π 10 ) ] × [ 1 + cos ( 5 π 10 ) ] × [ 1 + cos ( 7 π 10 ) ] × [ 1 + cos ( 9 π 10 ) ] = 16 + 20 5 16 = 1 16 . \begin{aligned} && \left [ 1+ \cos\left(\frac{\pi}{10} \right)\right ] \times \left [ 1+ \cos\left(\frac{3\pi}{10}\right) \right] \times \left [ 1+\cos\left(\frac{5\pi}{10}\right)\right ] \times \left [ 1+ \cos\left( \frac{7\pi}{10}\right) \right ] \times \left [ 1+\cos\left(\frac{9\pi}{10}\right) \right ] \\ && = - \frac{-16 + 20 - 5}{16} \\ && = \frac1{16}. \end{aligned}

With cos ( 5 π 10 ) = 0 \cos\left(\frac{5\pi}{10}\right) = 0 , we obtained the desired value of 1 16 \dfrac1{16} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...