( 1 + cos 1 0 π ) ( 1 + cos 1 0 3 π ) ( 1 + cos 1 0 7 π ) ( 1 + cos 1 0 9 π )
Find the reciprocal of the value of the expression above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
You can simplify your work on your third line:
… = = = = = sin 2 ( π / 5 ) sin 2 ( 3 π / 5 ) 4 1 ( − 2 sin ( 3 π / 5 ) sin ( π / 5 ) ) 2 4 1 ( cos ( 2 π / 5 ) − cos ( π / 5 ) ) 2 4 1 ( cos ( 2 π / 5 ) + cos ( 4 π / 5 ) ) 2 4 1 ⋅ ( − 2 1 ) 2 = 1 6 1
Great solution by the way!
Could you explain this please? cos 5 π + cos 5 3 π = 2 1
Log in to reply
Check out my note here .
In general, we have:
k = 1 ∑ ⌊ 2 n ⌋ cos n ( 2 k − 1 ) π = 2 1 k = 1 ∑ ⌊ 2 n ⌋ cos n 2 k π = − 2 1
where n is an odd integer.
Consider the equation cos ( 5 x ) = 0 , it has roots of 5 x = 2 π , 2 3 π , 2 5 π , 2 7 π , 2 9 π . Equivalently, it has roots of x = 1 0 π , 1 0 3 π , 1 0 5 π , 1 0 7 π , 1 0 9 π .
By quintuple angle formula,
0 = cos ( 5 x ) = 1 6 cos 5 ( x ) − 2 0 cos 3 ( x ) + 5 cos ( x )
has roots x = 1 0 π , 1 0 3 π , 1 0 5 π , 1 0 7 π , 1 0 9 π .
For simplicity sake, let y = cos ( x ) , then the equation
1 6 y 5 − 2 0 y 3 + 5 y = 0
has roots y = cos ( 1 0 π ) , cos ( 1 0 3 π ) , cos ( 1 0 5 π ) , cos ( 1 0 7 π ) , cos ( 1 0 9 π ) .
Let y = Y − 1 , then the equation
1 6 ( Y − 1 ) 5 − 2 0 ( Y − 1 ) 3 + 5 ( Y − 1 ) = 0
has roots Y = 1 + cos ( 1 0 π ) , 1 + cos ( 1 0 3 π ) , 1 + cos ( 1 0 5 π ) , 1 + cos ( 1 0 7 π ) , 1 + cos ( 1 0 9 π ) .
By Vieta's formula,
[ 1 + cos ( 1 0 π ) ] × [ 1 + cos ( 1 0 3 π ) ] × [ 1 + cos ( 1 0 5 π ) ] × [ 1 + cos ( 1 0 7 π ) ] × [ 1 + cos ( 1 0 9 π ) ] = − 1 6 − 1 6 + 2 0 − 5 = 1 6 1 .
With cos ( 1 0 5 π ) = 0 , we obtained the desired value of 1 6 1 .
Problem Loading...
Note Loading...
Set Loading...
Let P be the expression, then we have:
P ⇒ P 1 = ( 1 + cos 1 0 π ) ( 1 + cos 1 0 3 π ) ( 1 + cos 1 0 7 π ) ( 1 + cos 1 0 9 π ) [ cos 1 0 k π = − cos ( 1 0 1 0 − k π ) ] = ( 1 + cos 1 0 π ) ( 1 + cos 1 0 3 π ) ( 1 − cos 1 0 3 π ) ( 1 − cos 1 0 π ) = ( 1 − cos 2 1 0 π ) ( 1 − cos 2 1 0 3 π ) = sin 2 1 0 π sin 2 1 0 3 π = 4 1 ( 1 − cos 5 π ) ( 1 − cos 5 3 π ) [ cos 5 π + cos 5 3 π = 2 1 ] = 4 1 ( 1 − cos 5 π ) ( 1 − [ 2 1 − cos 5 π ] ) = 8 1 ( 1 − cos 5 π ) ( 1 + 2 cos 5 π ) = 8 1 ( 1 + cos 5 π − 2 cos 2 5 π ) [ 2 cos 2 5 π − 1 = cos 5 2 π ] = 8 1 ( cos 5 π − cos 5 2 π ) [ cos 5 k π = − cos ( 5 5 − k π ) ] = 8 1 ( cos 5 π + cos 5 3 π ) [ cos 5 π + cos 5 3 π = 2 1 ] = 8 1 ( 2 1 ) = 1 6 1 = 1 6