Let's see how good you are at polynomial transformation

Algebra Level 4

Let r 1 , r 2 , . . . , r 2014 r_{1}, r_{2}, ..., r_{2014} be the roots, not all necessarily distinct, of the polynomial x 2014 + x 20 + x 14 + 2014. x^{2014} + x^{20} + x^{14} + 2014. The polynomial with roots

r 2 + r 3 + + r 2014 r 1 r 2 2 + r 3 2 + + r 2014 2 r 1 2 , r 1 + r 3 + + r 2014 r 2 r 1 2 + r 3 2 + + r 2014 2 r 2 2 , , r 1 + r 2 + + r 2013 r 2014 r 1 2 + r 2 2 + + r 2013 2 r 2014 2 \frac{r_{2}+r_{3}+\cdots+r_{2014}-r_{1}}{r_{2}^{2}+r_{3}^{2}+\cdots+r_{2014}^{2}-r_{1}^{2}}, \frac{r_{1}+r_{3}+\cdots+r_{2014}-r_{2}}{r_{1}^{2}+r_{3}^{2}+\cdots+r_{2014}^{2}-r_{2}^{2}}, \cdots, \frac{r_{1}+r_{2}+\cdots+r_{2013}-r_{2014}}{r_{1}^{2}+r_{2}^{2}+\cdots+r_{2013}^{2}-r_{2014}^{2}}

has the form a x b + x c + x d + e ax^{b} + x^{c} + x^{d} + e , for some positive integers a , b , c , d , a, b, c, d, and e e . Find a + b + c + d + e . a+b+c+d+e.


The answer is 8023.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Steven Yuan
Dec 1, 2014

Let S n S_{n} denote the sum of the n n th powers of the roots of the given polynomial. From Newton's sums, we have S 1 = 0 S_{1} = 0 and S 2 = 0 S_{2} = 0 . This means that the sum of any 2013 2013 roots of this polynomial equals the negative of the last root: a 1 + a 2 + . . . + a n 1 + a n + 1 + . . . + a 2014 = a n a_{1} + a_{2} + ... + a_{n-1} + a_{n+1} + ... + a_{2014} = -a_{n} . Same thing for the squares of the roots: a 1 2 + a 2 2 + . . . + a n 1 2 + a n + 1 2 + . . . + a 2014 2 = a n 2 a_{1}^{2} + a_{2}^{2} + ... + a_{n-1}^{2} + a_{n+1}^{2} + ... + a_{2014}^{2} = -a_{n}^{2} . Thus,

r 2 + r 3 + + r 2014 r 1 r 2 2 + r 3 2 + + r 2014 2 r 1 2 = r 1 r 1 r 1 2 r 1 2 = 2 r 1 2 r 1 2 = 1 r 1 . \frac{r_{2}+r_{3}+\cdots+r_{2014}-r_{1}}{r_{2}^{2}+r_{3}^{2}+\cdots+r_{2014}^{2}-r_{1}^{2}} = \frac{-r_{1} -r_{1}}{-r_{1}^{2}-r_{1}^{2}} = \frac{-2r_{1}}{-2r_{1}^{2}} = \frac{1}{r_{1}}.

Similarly, the other expressions evaluate as 1 r 2 , 1 r 3 , . . . , 1 r 2014 . \frac{1}{r_{2}}, \frac{1}{r_{3}}, ..., \frac{1}{r_{2014}}. The polynomial with these roots is 2014 x 2014 + x 2000 + x 1994 + 1 , 2014x^{2014} + x^{2000} + x^{1994} + 1, so a + b + c + d + e = 8023 . a+b+c+d+e=\boxed{8023}.

Same as I did!! :)

Pranjal Jain - 6 years, 6 months ago

i did same

Dev Sharma - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...