Let's sum differently

Algebra Level 4

1 + 2 2 + 3 + 4 2 + + 99 + 10 0 2 = ? \large1 + 2^2 + 3 + 4^2 + \cdots + 99 + 100^2 = \, ?


The answer is 174200.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 20, 2016

S = 1 + 2 2 + 3 + 4 2 + + 99 + 10 0 2 = 1 + 3 + 5 + + 99 + 2 2 + 4 2 + 6 2 + + 10 0 2 = 1 + 3 + 5 + + 99 + 2 2 ( 1 + 2 2 + 3 2 + + 5 0 2 ) = 50 ( 1 + 99 ) 2 + 4 ( 50 ( 51 ) ( 101 ) 6 ) = 2500 + 171700 = 174200 \begin{aligned} S & = 1 + 2^2 + 3 + 4^2 + \cdots + 99 + 100^2 \\ & = 1+ 3 + 5+ \cdots + 99 + 2^2 + 4^2 + 6^2 + \cdots + 100^2 \\ & = 1+ 3 + 5+ \cdots + 99 + 2^2 \left(1 + 2^2 + 3^2 + \cdots + 50^2 \right) \\ & = \frac {50(1+99)}2 + 4 \left( \frac {50(51)(101)}6 \right) \\ & = 2500 + 171700 \\ & = \boxed{174200} \end{aligned}

Ah! Nice solution! I did it the not-so-smart way and used calculator. I used sigma for the squares of even numbers.

Rico Lee - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...