Let's triple the fun!!

Calculus Level 5

If

e x 2 y 2 z 2 d x d y d z \displaystyle\int_{-\infty} ^{\infty}\displaystyle\int_{-\infty} ^{\infty}\displaystyle\int_{-\infty} ^{\infty} e^{-x^2-y^2-z^2}\ dx \ dy \ dz

Can be expressed as

P i ( x ) × k π \ Pi(x) \times \sqrt{k} \pi

Find the value of k k


P i ( x ) = 0 e x 2 d x \ Pi(x) =\displaystyle\int_0^{\infty} e^{-x^{2}} \ dx


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kartik Sharma
May 1, 2015

Well, not worth Level 5!

We can write the integral as -

e y 2 d y e z 2 d z e x 2 d x \displaystyle \int_{-\infty}^{\infty}{{e}^{-{y}^{2}}} dy \int_{-\infty}^{\infty}{{e}^{-{z}^{2}}} dz \int_{-\infty}^{\infty}{{e}^{-{x}^{2}}} dx

We know that Gaussian integral e a 2 d a = π \displaystyle \int_{-\infty}^{\infty}{{e}^{-{a}^{2}}} da = \sqrt{\pi}

So, we can write the integral as -

( π ) ( π ) ( 2 Pi ( x ) ) \displaystyle (\sqrt{\pi})(\sqrt{\pi})(2\text{Pi}(x))

Hence,

Pi ( x ) 4 π \displaystyle \text{Pi}(x)\sqrt{4}\pi

James Wilson
Jan 6, 2021

Switching to spherical coordinates, the integral becomes: 0 2 π 0 π 0 e ρ 2 ρ 2 sin ϕ d ρ d ϕ d θ \int_{0}^{2\pi}\int_{0}^{\pi}\int_0^{\infty}e^{-\rho^2}\rho^2\sin{\phi}d\rho d\phi d\theta = 4 π 0 e ρ 2 ρ 2 d ρ =4\pi\int_0^{\infty}e^{-\rho^2}\rho^2d\rho = 4 π [ 1 2 ρ e ρ 2 + 1 2 e ρ 2 ] 0 =4\pi\Big[-\frac{1}{2}\rho e^{-\rho^2}+\int \frac{1}{2}e^{-\rho^2}\Big]_0^\infty = 2 π 0 e ρ 2 d ρ =2\pi\int_0^\infty e^{-\rho^2}d\rho k = 2 k = 4 \Rightarrow \sqrt{k}=2 \Rightarrow k =4

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...