Let's try to solve this Equation

Geometry Level 3

If cos ( 2 x ) = 2 3 \cos(2x)=-\dfrac23 and P = 2 3 cos x cos x 3 + 4 sin x sin x P=\dfrac{2-3\cos x \cos x} {3+4\sin x \sin x} .

Find P P (to four decimal places).


The answer is 0.2368.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 10, 2016

P = 1 3 cos x cos x 3 + 4 sin x sin x = 1 3 cos 2 x 3 + 4 sin 2 x = 1 3 2 ( 1 + cos 2 x ) 3 + 4 2 ( 1 cos 2 x ) = 1 3 2 ( 1 2 3 ) 3 + 4 2 ( 1 + 2 3 ) = 1 3 2 ( 1 3 ) 3 + 4 2 ( 5 3 ) = 1 3 2 ( 1 3 ) 3 + 4 2 ( 5 3 ) = 1 2 19 3 = 3 38 0.2368 \begin{aligned} P & = \frac{1-3\cos x \cos x}{3+4\sin x \sin x} = \frac{1-3\cos^2 x}{3+4\sin^2 x} = \frac{1-\frac32 \left(1+\cos 2 x\right)}{3+\frac42 \left(1-\cos 2 x\right)} \\ & = \frac{1-\frac32 \left(1-\frac23 \right)}{3+\frac42 \left(1+\frac23 \right)} = \frac{1-\frac32 \left(\frac13 \right)}{3+\frac42 \left(\frac53 \right)} = \frac{1-\frac32 \left(\frac13 \right)}{3+\frac42 \left(\frac53 \right)} \\ & = \frac{\frac12}{\frac{19}3} = \frac3{38} \approx \boxed{0.2368} \end{aligned}

Ahmed Hossain
Jun 13, 2016

ans is 9 38 \frac{9}{38}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...