LetsSolveMathProblems 77th Problem of the Week

Calculus Level 4

Given ω = e π i 1010 \omega = e^{\frac{\pi i}{1010}} , find the last three digits of

k = 1 2019 j k j = 1 2019 ( ω k ω j ) \large - \sum\limits_{k = 1}^{2019} \prod\limits_{\overset{j=1}{j \neq k}}^{2019} (\omega ^ k - \omega ^ j) .

Credit to YouTube channel LetsSolveMathProblems.


The answer is 170.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Zain Majumder
Jan 31, 2019

Consider the function P ( x ) = ( x ω ) ( x ω 2 ) . . . ( x ω 2019 ) P(x) = (x- \omega)(x- \omega^2)...(x- \omega^{2019}) . All solutions of the equation x 2020 = 1 x^{2020} = 1 except for x = 1 x = 1 are the zeros of P ( x ) P(x) , so P ( x ) = x 2020 1 x 1 = x 2019 + x 2018 + . . . + 1 P(x) = \frac{x^{2020}-1}{x-1} = x^{2019} + x^{2018} + ... + 1 . From the original expression for P ( x ) P(x) , we find that P ( x ) = ( x ω 2 ) ( x ω 3 ) . . . ( x ω 2019 ) + ( x ω ) ( x ω 3 ) . . . ( x ω 2019 ) + . . . + ( x ω ) ( x ω 2 ) . . . ( x ω 2018 ) P'(x) = (x- \omega^2)(x- \omega^3)...(x- \omega^{2019}) + (x- \omega)(x- \omega^3)...(x- \omega^{2019}) + ... + (x- \omega)(x- \omega^2)...(x- \omega^{2018}) Put concisely, P'(x) = \sum\limits_{n = 1}^{2019} \prod\limits_{j=1}_{j \neq n}^{2019} (x - \omega^j) . Note that when P ( ω k ) P'(\omega ^ k) is evaluated, all terms of the sum become zero except for the term where n = k n = k . Therefore, P'(\omega^k) = \prod\limits_{j=1}_{j \neq k}^{2019} (\omega^k - \omega^j) . The expression we are solving for is now equal to k = 1 2019 P ( ω k ) = k = 1 2019 ( 2019 ω 2018 k + 2018 ω 2017 k + . . . + 1 ) -\sum\limits_{k=1}^{2019} P'(\omega^k) = -\sum\limits_{k=1}^{2019} (2019\omega^{2018k} + 2018\omega^{2017k} + ... + 1) We can evaluate a similar expression:

k = 0 2019 ( 2019 ω 2018 k + 2018 ω 2017 k + . . . + 1 ) \sum\limits_{k=0}^{2019} (2019\omega^{2018k} + 2018\omega^{2017k} + ... + 1) = 2019 k = 0 2019 ω 2018 k + 2018 k = 0 2019 ω 2017 k + . . . + k = 0 2019 1 = 2019 \sum\limits_{k=0}^{2019} \omega^{2018k} + 2018 \sum\limits_{k=0}^{2019} \omega^{2017k} + ... + \sum\limits_{k=0}^{2019} 1

k = 0 2019 ω c k \sum\limits_{k=0}^{2019} \omega^{ck} is a geometric series that evaluates to 1 ω 2020 c 1 ω c \frac{1-\omega^{2020c}}{1-\omega^c} when c 0 c \neq 0 . Because ω 2020 = 1 \omega^{2020} = 1 , this equals 1 1 1 ω c = 0 \frac{1-1}{1-\omega^c} = 0 . Therefore, the expression becomes k = 0 2019 1 = 2020 \sum\limits_{k=0}^{2019} 1 = 2020 .

Finally, we can evaluate the original expression:

k = 1 2019 P ( ω k ) = ( P ( ω 0 ) + k = 0 2019 P ( ω k ) ) -\sum\limits_{k=1}^{2019} P'(\omega^k) = - (-P'(\omega^0) + \sum\limits_{k=0}^{2019} P'(\omega^k)) = P ( 1 ) 2020 = 2019 + 2018 + . . . + 2 + 1 2020 = ( 1010 ) ( 2019 ) 2020 = P'(1) - 2020 = 2019 + 2018 + ... + 2 + 1 - 2020 = (1010)(2019) - 2020 ( 10 ) ( 19 ) 20 ( m o d 1000 ) = 170 \equiv (10)(19) - 20 \pmod{1000} = \boxed{170} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...