Level 1

Algebra Level 2

If log 16 49 = a , log 7 2.5 = b \log _{ 16 }{ 49 } =a\quad ,\log _{ 7 }{ 2.5 } =b

4 a b + 1 = ? { 4 }^{ ab+1 }\quad =\quad ?

51 10 64 1024

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Observe that :

1 0 2 10^{2} = 100 and l o g 10 100 = 2 log_{10}100 = 2

Let the unknown be y

So we can rewrite 4 a b + 1 4^{ab+1} as

l o g 4 y log_{4}y = ab+1

Plugin the values of a and b

l o g 4 y log_{4}y = l o g 16 49 × l o g 7 2.5 + 1 log_{16}49 \times log_{7}2.5 + 1

Note that 1 = log_{number}number

Thus we can say that :

l o g 4 y log_{4}y = l o g 16 49 × l o g 7 2.5 + l o g 4 4 log_{16}49 \times log_{7}2.5 + log_{4}4

We can also rewrite l o g a b log_{a}b into log b / log a

Thus we say that

l o g 4 y log_{4}y = ( log 49 / log 16) × \times (log 2.5 / log 7) + (log 4 / log 4)

Then you'll see that

l o g 4 y log_{4}y = ( log 49 / log 7) × \times (log 2.5 / log 16) + (log 4 / log 4) note:swap denominator since its multiplication

l o g 4 y log_{4}y = 2 × \times (log 2.5 / log 16) + (log 4 / log 4) note: ( log 49 / log 7) = 2, since 7 2 7^{2} = 49

l o g 4 y log_{4}y = 2 × \times (log 2.5 / 2log 4) + (log 4 / log 4) note: rules for exponent on logarithms, l o g 4 2 log4^{2} = 2log4

l o g 4 y log_{4}y = (log 2.5 / log 4) + (log 4 / log 4)

l o g 4 y log_{4}y = (log 2.5 + log 4 / log 4)

l o g 4 y log_{4}y = (log 10 / log 4)

l o g 4 y log_{4}y = l o g 4 10 log_{4}10

y = 10

Rawan Medhat
Dec 25, 2015

log 16 49 = a m e a n s 16 a = 49 \log _{ 16 }{ 49\quad =a\quad means\quad { 16 }^{ a }=49\quad }

log 7 2.5 = b m e a n s 7 b = 2.5 \log _{ 7 }{ 2.5=b\quad means\quad { 7 }^{ b }=2.5 }

b = 1 2 \quad b=\quad \frac { 1 }{ 2 }

s i n c e 49 2.5 4 since\quad 49\quad \approx \quad { 2.5 }^{ 4 }

16 a = 2.5 4 { 16 }^{ a }={ 2.5 }^{ 4 }

16 = 2.5 3 2.5 3 a = 2.5 4 \because \quad 16\quad =\quad { 2.5 }^{ 3 }\\ \therefore \quad { 2.5 }^{ 3a }={ 2.5 }^{ 4 }

a = 4 3 \quad a=\frac { 4 }{ 3 }

4 4 3 × 1 2 + 1 = 10 \therefore \quad { 4 }^{ \frac { 4 }{ 3 } \times \frac { 1 }{ 2 } +1 }=\boxed { 10 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...