Power 1

Algebra Level 3

n = 1 n 3 n = X \sum_{n=1}^ \infty \frac{ n}{ 3^n } = X

X X can be expressed in the form a b \dfrac{a}{b} , where a a and b b are coprime positive integers. Find a + b a + b .

Too easy? Go to the next level .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

X = n = 1 n 3 n = n = 0 n 3 n = n = 0 n + 1 3 n + 1 = n = 0 n 3 n + 1 + n = 0 1 3 n + 1 = 1 3 n = 0 n 3 n + 1 3 n = 0 1 3 n = X 3 + 1 3 ( 1 1 1 3 ) 2 3 X = 1 2 X = 3 4 \begin{aligned} X & =\sum_{\color{#3D99F6}n=1}^\infty \frac n{3 ^n} =\sum_{\color{#D61F06}n=0} ^\infty \frac n{3 ^n} \\ & =\sum_{\color{#D61F06}n=0}^\infty \frac {\color{#D61F06}n+1}{3 ^{\color{#D61F06}n+1}} \\ & = \sum_{\color{#D61F06}n=0}^\infty \frac n{3 ^{n+1}} + \sum_{\color{#D61F06}n=0}^\infty \frac 1{3 ^{n+1}} \\ & = \frac 13 \sum_{\color{#D61F06}n=0}^\infty \frac n{3 ^n} + \frac 13 \sum_{\color{#D61F06}n=0}^\infty \frac 1{3 ^n} \\ & = \frac X3 + \frac 13\left(\frac 1 {1 - \frac 1 3} \right) \\ \frac 23 X & = \frac 12 \\ \implies X & = \frac 34 \end{aligned}

a + b = 3 + 4 = 7 \implies a+b =3+4=\boxed {7}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...