Power 2

Algebra Level 3

n = 1 n 2 3 n = X \sum_{n=1}^ \infty \frac{{ n }^{ 2 } }{ 3^n } = X

X X can be expressed in the form a b \dfrac{a}{b} , where a a and b b are coprime positive integers. Find a + b a + b .

Too easy? Go to the next level .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

X = n = 1 n 2 3 n = n = 0 n 2 3 n = n = 0 ( n + 1 ) 2 3 n + 1 = n = 0 n 2 + 2 n + 1 3 n + 1 = n = 0 n 2 3 n + 1 + 2 n = 0 n 3 n + 1 + n = 0 1 3 n + 1 = 1 3 n = 0 n 2 3 n + 2 3 n = 0 n 3 n + 1 3 n = 0 1 3 n = X 3 + 2 3 3 4 + 1 3 ( 1 1 1 3 ) See Note. 2 3 X = 1 X = 3 2 \begin{aligned} X & =\sum_{\color{#3D99F6}n=1}^\infty \frac {n^2}{3 ^n} =\sum_{\color{#D61F06}n=0} ^\infty \frac {n^2}{3 ^n} \\ & =\sum_{\color{#D61F06}n=0} ^\infty \frac {({\color{#D61F06}n+1})^2}{3 ^{\color{#D61F06}n+1}} \\ & =\sum_{\color{#D61F06}n=0} ^\infty \frac {n^2+2n+1}{3 ^{n+1}} \\ & = \sum_{\color{#D61F06}n=0} ^\infty \frac {n^2}{3 ^{n+1}} + 2 \sum_{\color{#D61F06}n=0}^\infty \frac n{3 ^{n+1}} + \sum_{\color{#D61F06}n=0}^\infty \frac 1{3 ^{n+1}} \\ & = \frac 13 \sum_{\color{#D61F06}n=0}^\infty \frac {n^2}{3 ^n} + \frac 23 \sum_{\color{#D61F06}n=0}^\infty \frac n{3 ^n} + \frac 13 \sum_{\color{#D61F06}n=0}^\infty \frac 1{3 ^n} \\ & = \frac X3 + \frac 23 \cdot {\color{#3D99F6}\frac 34} + \frac 13 \left(\frac 1 {1 - \frac 1 3} \right) & \small {\color{#3D99F6} \text{See Note.}} \\ \frac 23 X & = 1 \\ X & = \frac 32 \end{aligned}

a + b = 3 + 2 = 5 \implies a+b =3+2=\boxed{5}


Note: Using similar technique:

X 1 = n = 0 n 3 n = n = 1 n 3 n = n = 0 n + 1 3 n + 1 = n = 0 n 3 n + 1 + n = 0 1 3 n + 1 = 1 3 n = 0 n 3 n + 1 3 n = 0 1 3 n = X 1 3 + 1 3 ( 1 1 1 3 ) 2 3 X 1 = 1 2 X 1 = 3 4 \begin{aligned} X_1 & = \sum_{\color{#D61F06}n=0} ^\infty \frac n{3 ^n} \\ & = \sum_{\color{#3D99F6}n=1}^\infty \frac n{3 ^n} \\ & =\sum_{\color{#D61F06}n=0}^\infty \frac {\color{#D61F06}n+1}{3 ^{\color{#D61F06}n+1}} \\ & = \sum_{\color{#D61F06}n=0}^\infty \frac n{3 ^{n+1}} + \sum_{\color{#D61F06}n=0}^\infty \frac 1{3 ^{n+1}} \\ & = \frac 13 \sum_{\color{#D61F06}n=0}^\infty \frac n{3 ^n} + \frac 13 \sum_{\color{#D61F06}n=0}^\infty \frac 1{3 ^n} \\ & = \frac {X_1}3 + \frac 13\left(\frac 1 {1 - \frac 1 3} \right) \\ \frac 23 X_1 & = \frac 12 \\ \implies X_1 & = \frac 34 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...