Power 4

Algebra Level 4

n = 1 n 4 3 n = X \sum_{n=1}^ \infty \frac{ { n }^{ 4 }}{ 3^n } = X

X X can be expressed in the form a b \dfrac{a}{b} , where a a and b b are coprime positive integers. Find a + b a + b .

Too easy? Go to the next level


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Relevant wiki: Polylogarithm

For 1 < x < 1 -1< x < 1 , we have:

n = 0 x n = 1 1 x Differentiate both sides n = 1 n x n 1 = 1 ( 1 x ) 2 Multiply both sides by x n = 1 n x n = x ( 1 x ) 2 Differentiate again n = 1 n 2 x n 1 = 1 + x ( 1 x ) 3 × x again n = 1 n 2 x n = x ( 1 + x ) ( 1 x ) 3 Differentiate again n = 1 n 3 x n 1 = 1 + 4 x + x 2 ( 1 x ) 4 × x again n = 1 n 3 x n = x + 4 x 2 + x 3 ( 1 x ) 4 Differentiate again n = 1 n 4 x n 1 = 1 + 11 x + 11 x 2 + x 3 ( 1 x ) 5 × x again n = 1 n 4 x n = x + 11 x 2 + 11 x 3 + x 4 ( 1 x ) 5 Put x = 1 3 n = 1 n 4 3 n = 1 3 + 11 3 2 + 11 3 3 + 1 3 4 ( 1 1 3 ) 5 = 15 \begin{aligned} \sum_{n=0}^\infty x^n & = \frac 1{1-x} & \small {\color{#3D99F6}\text{Differentiate both sides}} \\ \sum_{n=1}^\infty nx^{n-1} & = \frac 1{(1-x)^2} & \small {\color{#3D99F6}\text{Multiply both sides by }x} \\ \sum_{n=1}^\infty nx^n & = \frac x{(1-x)^2} & \small {\color{#3D99F6}\text{Differentiate again}} \\ \sum_{n=1}^\infty n^2x^{n-1} & = \frac {1+x}{(1-x)^3} & \small {\color{#3D99F6} \times x \text{ again}} \\ \sum_{n=1}^\infty n^2x^n & = \frac {x(1+x)}{(1-x)^3} & \small {\color{#3D99F6}\text{Differentiate again}} \\ \sum_{n=1}^\infty n^3x^{n-1} & = \frac {1+4x+x^2}{(1-x)^4} & \small {\color{#3D99F6} \times x \text{ again}} \\ \sum_{n=1}^\infty n^3x^n & = \frac {x+4x^2+x^3}{(1-x)^4} & \small {\color{#3D99F6}\text{Differentiate again}} \\ \sum_{n=1}^\infty n^4x^{n-1} & = \frac {1+11x+11x^2+x^3}{(1-x)^5} & \small {\color{#3D99F6} \times x \text{ again}} \\ \sum_{n=1}^\infty n^4x^n & = \frac {x+11x^2+11x^3+x^4}{(1-x)^5} & \small {\color{#3D99F6} \text{Put }x = \frac 13} \\ \sum_{n=1}^\infty \frac {n^4}{3^n} & = \frac {\frac 13+ \frac {11}{3^2}+\frac{11}{3^3}+\frac 1{3^4}}{\left(1-\frac 13 \right)^5} \\ & = 15 \end{aligned}

a + b = 15 + 1 = 16 \implies a+b = 15+1 = \boxed{16} .


Again a great solution sir.....

Md Zuhair - 4 years, 7 months ago

Log in to reply

"Similar problem" is for n = 1 n 5 5 n \displaystyle \sum_{n=1}^\infty \frac {n^5}{5^n} .

Chew-Seong Cheong - 4 years, 7 months ago

I was actually confused because I got 15 then I realised it was 15 + 1

Mohammad Farhat - 2 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...