L'Hopital is a curse here!

Calculus Level 4

( x sin x ) 3 2 x ( 6 x 2 sin 2 x 2 x sin x + 3 x ) d x = a x b ( x sin x ) c + C \large\ \int { \frac { {( x - \sin { x }) }^{ \frac { 3 }{ 2 } } }{ \sqrt { x } } \left( \frac { 6{ x }^{ 2 }\sin ^{ 2 }{ \frac { x }{ 2 } } }{ x - \sin { x } } + 3x \right) dx } = a{ x }^{ b }{( x - \sin { x }) }^{ c } + C ,

If the equation above holds true for natural number a a and positive rational numbers b b and c c , and the constant of integration C C . Find a + 2 b + 4 c a + 2b + 4c .


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let the integral I = f ( x ) d x \displaystyle I = \int f(x) \ dx . Then:

f ( x ) = ( x sin x ) 3 2 x ( 6 x 2 sin 2 x 2 x sin x + 3 x ) = ( x sin x ) 3 2 x ( 6 x 2 2 ( 1 cos x ) x sin x + 3 x ) = 3 x ( x sin x ) 3 2 x ( x ( 1 cos x ) x sin x + 1 ) = 3 x ( x sin x ) 3 2 ( x x cos x + x sin x x sin x ) = 3 x 1 2 ( x sin x ) 1 2 ( 2 x x cos x sin x ) . . . ( 1 ) \begin{aligned} f(x) & = \frac {(x-\sin x)^\frac 32}{\sqrt x}\left(\frac {6x^2\sin^2 \frac x2}{x-\sin x} + 3x\right) \\ & = \frac {(x-\sin x)^\frac 32}{\sqrt x}\left(\frac {\frac {6x^2}2(1-\cos x)}{x-\sin x} + 3x\right) \\ & = \frac {3x(x-\sin x)^\frac 32}{\sqrt x}\left(\frac {x(1-\cos x)}{x-\sin x} + 1\right) \\ & = 3\sqrt x(x-\sin x)^\frac 32 \left(\frac {x-x\cos x + x-\sin x}{x-\sin x}\right) \\ & = 3 x^{\color{#D61F06}\frac 12} (x-\sin x)^{\color{#D61F06}\frac 12} \left(2x-x\cos x -\sin x\right) & ...(1) \end{aligned}

We note that:

f ( x ) = d d x ( a x b ( x sin x ) c + C ) = a b x b 1 ( x sin x ) c + a c x b ( x sin x ) c 1 ( 1 cos x ) = a x b 1 ( x sin x ) c 1 ( b ( x sin x ) + c x ( 1 cos x ) ) = a x b 1 ( x sin x ) c 1 ( ( b + c ) x c x cos x b sin x ) Comparing with (1): b = c = 3 2 = a x 1 2 ( x sin x ) 1 2 ( 3 x 3 2 x cos x 3 2 sin x ) = 3 a 2 x 1 2 ( x sin x ) 1 2 ( 2 x x cos x sin x ) a = 2 \begin{aligned} f(x) & = \frac d{dx} \left(ax^b(x-\sin x)^c + C\right) \\ & = abx^{b-1}(x-\sin x)^c + acx^b(x-\sin x)^{c-1}(1-\cos x) \\ & = ax^{b-1}(x-\sin x)^{c-1}\left(b(x-\sin x) + cx(1-\cos x)\right) \\ & = ax^{\color{#D61F06}b-1}(x-\sin x)^{\color{#D61F06}c-1}\left((b+c)x-cx\cos x - b\sin x\right) & \small \color{#D61F06} \text{Comparing with (1): } b = c = \frac 32 \\ & = ax^{\color{#D61F06}\frac 12}(x-\sin x)^{\color{#D61F06}\frac 12}\left({\color{#D61F06}3}x-{\color{#D61F06}\frac 32}x\cos x - {\color{#D61F06}\frac 32}\sin x\right) \\ & = {\color{#D61F06}\frac {3a}2}x^\frac 12(x-\sin x)^\frac 12 \left(2x-x\cos x -\sin x\right) & \small \color{#D61F06} \implies a = 2 \end{aligned}

a + 2 b + 4 c = 2 + 2 3 2 + 4 3 2 = 11 \implies a+2b+4c = 2 + 2\cdot \dfrac 32 + 4 \cdot \dfrac 32 = \boxed{11}

Oh what a backtracking approach!

Priyanshu Mishra - 3 years, 9 months ago

Log in to reply

I presume that is the best way.

Chew-Seong Cheong - 3 years, 9 months ago
敬全 钟
Sep 7, 2017

Continue from what @Chew-Seong Cheong has done in the previous solution, we have f ( x ) d x = 3 x 1 2 ( x sin x ) 1 2 ( x x cos x + x sin x ) d x = 3 x 3 2 ( x sin x ) 1 2 ( 1 cos x ) d x + 3 x 1 2 ( x sin x ) 3 2 d x . \begin{aligned} \int f(x)\ dx&=\int 3x^{\frac{1}{2}}(x-\sin x)^{\frac{1}{2}}(x-x\cos x+x-\sin x)\ dx\\ &={\color{#3D99F6}\int 3x^{\frac{3}{2}}(x-\sin x)^{\frac{1}{2}}(1-\cos x)\ dx}+{\color{magenta}\int 3x^{\frac{1}{2}}(x-\sin x)^{\frac{3}{2}}\ dx}.\\ \end{aligned} We shall put more focus on the term highlighted in blue by applying integration by parts on it. We let u = ( x sin x ) 1 2 ( 1 cos x ) u = 2 3 ( x sin x ) 3 2 (See note) v = x 3 2 v = 3 2 x 1 2 . \begin{aligned} u'=(x-\sin x)^{\frac{1}{2}}(1-\cos x)&\Rightarrow u=\frac{2}{3}(x-\sin x)^{\frac{3}{2}}\ \text{(See note)}\\ v=x^{\frac{3}{2}}&\Rightarrow v'=\frac{3}{2}x^{\frac{1}{2}}. \end{aligned} Thus, we have 3 x 3 2 ( x sin x ) 1 2 ( 1 cos x ) d x = 2 x 3 2 ( x sin x ) 3 2 3 x 1 2 ( x sin x ) 3 2 d x . \begin{aligned} \int 3x^{\frac{3}{2}}(x-\sin x)^{\frac{1}{2}}(1-\cos x)\ dx=2x^{\frac{3}{2}}(x-\sin x)^{\frac{3}{2}}-{\color{magenta}\int 3x^{\frac{1}{2}}(x-\sin x)^{\frac{3}{2}}\ dx}. \end{aligned} Observe that the terms highlighted in magenta cancels each other. Therefore, the integral evaluates to f ( x ) d x = 2 x 3 2 ( x sin x ) 3 2 + C . \int f(x)\ dx=2x^{\frac{3}{2}}(x-\sin x)^{\frac{3}{2}}+C.


Note: ( x sin x ) 1 2 ( 1 cos x ) d x = t 1 2 d t ( t = x sin x d t = ( 1 cos x ) d x ) = 2 3 t 3 2 (Arbitrary constants omitted) = 2 3 ( x sin x ) 3 2 \begin{aligned} \int (x-\sin x)^{\frac{1}{2}}(1-\cos x)\ dx&=\int t^{\frac{1}{2}}\ dt &({\color{#3D99F6} t=x-\sin x\Rightarrow dt=(1-\cos x)\ dx})\\ &=\frac{2}{3}t^{\frac{3}{2}}\ &\text{(Arbitrary constants omitted)}\\ &=\frac{2}{3}(x-\sin x)^{\frac{3}{2}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...