∫ x ( x − sin x ) 2 3 ( x − sin x 6 x 2 sin 2 2 x + 3 x ) d x = a x b ( x − sin x ) c + C ,
If the equation above holds true for natural number a and positive rational numbers b and c , and the constant of integration C . Find a + 2 b + 4 c .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Oh what a backtracking approach!
Continue from what @Chew-Seong Cheong has done in the previous solution, we have ∫ f ( x ) d x = ∫ 3 x 2 1 ( x − sin x ) 2 1 ( x − x cos x + x − sin x ) d x = ∫ 3 x 2 3 ( x − sin x ) 2 1 ( 1 − cos x ) d x + ∫ 3 x 2 1 ( x − sin x ) 2 3 d x . We shall put more focus on the term highlighted in blue by applying integration by parts on it. We let u ′ = ( x − sin x ) 2 1 ( 1 − cos x ) v = x 2 3 ⇒ u = 3 2 ( x − sin x ) 2 3 (See note) ⇒ v ′ = 2 3 x 2 1 . Thus, we have ∫ 3 x 2 3 ( x − sin x ) 2 1 ( 1 − cos x ) d x = 2 x 2 3 ( x − sin x ) 2 3 − ∫ 3 x 2 1 ( x − sin x ) 2 3 d x . Observe that the terms highlighted in magenta cancels each other. Therefore, the integral evaluates to ∫ f ( x ) d x = 2 x 2 3 ( x − sin x ) 2 3 + C .
Note: ∫ ( x − sin x ) 2 1 ( 1 − cos x ) d x = ∫ t 2 1 d t = 3 2 t 2 3 = 3 2 ( x − sin x ) 2 3 ( t = x − sin x ⇒ d t = ( 1 − cos x ) d x ) (Arbitrary constants omitted)
Problem Loading...
Note Loading...
Set Loading...
Let the integral I = ∫ f ( x ) d x . Then:
f ( x ) = x ( x − sin x ) 2 3 ( x − sin x 6 x 2 sin 2 2 x + 3 x ) = x ( x − sin x ) 2 3 ( x − sin x 2 6 x 2 ( 1 − cos x ) + 3 x ) = x 3 x ( x − sin x ) 2 3 ( x − sin x x ( 1 − cos x ) + 1 ) = 3 x ( x − sin x ) 2 3 ( x − sin x x − x cos x + x − sin x ) = 3 x 2 1 ( x − sin x ) 2 1 ( 2 x − x cos x − sin x ) . . . ( 1 )
We note that:
f ( x ) = d x d ( a x b ( x − sin x ) c + C ) = a b x b − 1 ( x − sin x ) c + a c x b ( x − sin x ) c − 1 ( 1 − cos x ) = a x b − 1 ( x − sin x ) c − 1 ( b ( x − sin x ) + c x ( 1 − cos x ) ) = a x b − 1 ( x − sin x ) c − 1 ( ( b + c ) x − c x cos x − b sin x ) = a x 2 1 ( x − sin x ) 2 1 ( 3 x − 2 3 x cos x − 2 3 sin x ) = 2 3 a x 2 1 ( x − sin x ) 2 1 ( 2 x − x cos x − sin x ) Comparing with (1): b = c = 2 3 ⟹ a = 2
⟹ a + 2 b + 4 c = 2 + 2 ⋅ 2 3 + 4 ⋅ 2 3 = 1 1