L'Hopitaling this will put you in the L'Hopital

Calculus Level 4

lim x x x ( 1 + x ) x = E \large \lim_{x \to \infty} \frac{x^x}{(1+x)^x} = E

Find 1000 E \left \lfloor 1000 E \right \rfloor .


The answer is 367.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hobart Pao
Apr 9, 2017

= lim x + ( x 1 + x ) x = \displaystyle \lim_{x \to + \infty}\left( \dfrac{x}{1+x}\right)^x = lim x + ( 1 + x x ) x = \displaystyle \lim_{x \to +\infty}\left( \dfrac{1+x}{x} \right)^{-x} = lim x + ( 1 + 1 x ) x = \displaystyle \lim_{x \to +\infty}\left( 1 + \dfrac{1}{x} \right)^{-x} = lim x + [ ( 1 + 1 x ) x ] 1 = \displaystyle \lim_{x \to +\infty}\left[ \left( 1 + \dfrac{1}{x} \right)^{x} \right]^{-1} = 1 e 0 , 3678794412 = \dfrac{1}{e} \approx 0,3678794412 = 1000 1 e = 367 = \left \lfloor 1000 \dfrac{1}{e} \right\rfloor = \boxed{367}

Same here. FYI, something typo 0 , 36787 0,36787 instead of 0.36787 0.36787 :)

Naren Bhandari - 3 years, 7 months ago

I got the value 1000 e \frac{1000}{e} right, but I've failed to put it in the floor function(...) I gave the answer 368 instead of 367.

Pepper Mint - 3 years, 7 months ago
Ayon Ghosh
Dec 14, 2017

Consider ; lim x ( x 1 + x ) x \displaystyle \lim_{x \to \infty}\left( \dfrac{x}{1+x}\right)^x = lim x ( 1 1 1 + x ) x = \displaystyle \lim_{x \to \infty}\left( 1 - \dfrac{1}{1+x}\right)^x = lim x [ ( 1 1 1 + x ) x + 1 ] x x + 1 = \displaystyle \lim_{x \to \infty}\left[ \left( 1 - \dfrac{1}{1 +x} \right)^{x+1} \right]^{\dfrac{x}{x+1}} S i n c e , \boxed{Since},

lim x ( 1 1 1 + x ) 1 + x = e 1 \displaystyle \lim_{x \to \infty}\left( 1 - \dfrac{1}{1+x}\right)^{1+x} = e^{-1} And lim x ( x 1 + x ) = 1 \displaystyle \lim_{x \to \infty}( \dfrac{x}{1+x} ) = 1

So the limit E = e 1 E = e^{-1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...