L'Hôpital's ain't helpin' on this one

Calculus Level 4

lim x x 2 ln ( x cot 1 x ) = ? \large \lim_{x\to\infty} x^2\ln(x\cot^{-1}x)=?

1 3 -\frac{1}{3} 2 3 \frac{2}{3} 2 3 -\frac{2}{3} 1 3 \frac{1}{3}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jan 17, 2018

Relevant wiki: Maclaurin Series

L = lim x x 2 ln ( x cot 1 x ) Let θ = cot 1 x x = 1 tan θ = lim θ 0 ln ( θ tan θ ) tan 2 θ = lim θ 0 ln ( θ tan θ ) × 1 tan 2 θ By Maclaurin series = lim θ 0 ln ( θ θ + 1 3 θ 3 + 2 15 θ 5 + ) × 1 ( θ + 1 3 θ 3 + 2 15 θ 5 + ) 2 = lim θ 0 ln ( 1 + 1 3 θ 2 + 2 15 θ 4 + ) ( θ + 1 3 θ 3 + 2 15 θ 5 + ) 2 By Maclaurin series again = lim θ 0 1 3 θ 2 + O ( θ 4 ) θ 2 + O ( θ 4 ) Divide up and down by θ 2 = lim θ 0 1 3 + O ( θ 2 ) 1 + O ( θ 2 ) = 1 3 \begin{aligned} L & = \lim_{x \to \infty} x^2 \ln (x \cot^{-1}x) & \small \color{#3D99F6} \text{Let }\theta = \cot^{-1} x \implies x = \frac 1{\tan \theta} \\ & = \lim_{\theta \to 0} \frac {\ln \left(\frac \theta{\tan \theta} \right)}{\tan^2 \theta} \\ & = \lim_{\theta \to 0} \ln \left(\frac \theta{\color{#3D99F6} \tan \theta} \right) \times \frac 1{\color{#3D99F6} \tan^2 \theta} & \small \color{#3D99F6} \text{By Maclaurin series} \\ & = \lim_{\theta \to 0} \ln \left(\frac \theta{\color{#3D99F6} \theta + \frac 13 \theta^3 + \frac 2{15}\theta^5 + \cdots} \right) \times \frac 1{\color{#3D99F6}\left(\theta + \frac 13 \theta^3 + \frac 2{15}\theta^5 + \cdots\right)^2} \\ & = \lim_{\theta \to 0} - \frac {\color{#3D99F6} \ln \left(1 + \frac 13 \theta^2 + \frac 2{15}\theta^4 + \cdots \right)}{\left(\theta + \frac 13 \theta^3 + \frac 2{15}\theta^5 + \cdots\right)^2} & \small \color{#3D99F6} \text{By Maclaurin series again} \\ & = \lim_{\theta \to 0} - \frac {\color{#3D99F6} \frac 13 \theta^2 + O(\theta^4)}{\theta^2+O(\theta^4)} & \small \color{#3D99F6} \text{Divide up and down by }\theta^2 \\ & = \lim_{\theta \to 0} - \frac {\frac 13 + O(\theta^2)}{1+O(\theta^2)} \\ & = \boxed{-\dfrac 13} \end{aligned}

@Digvijay Singh are u giving fiitjee aits?

Ashutosh Sharma - 3 years, 4 months ago

Log in to reply

yes i am. this question's from AITS.

Digvijay Singh - 3 years, 4 months ago

Replace x by 1/x. Then multiply and divide ( arctanx/x-1). So that the limit of ln terms equals one.now we have lim (arctanx-x)/x^3. Using Lhopital now we have -x^2/(1+x^2)(3x^2). Canceling x^2 and putting x=0 we have lim=-1/3. Easy one

Ashutosh Sharma - 3 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...