Without using L'Hôpital's rule , calculate
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Relevant wiki: Maclaurin Series
We can use Maclaurin series to solve the problem as follows.
L = x → 0 lim ( e x − 1 ) ( 1 − cos ( x 2 ) ) x 2 sin x − x 3 = x → 0 lim ( 1 + x + 2 ! x 2 + ⋯ − 1 ) ( 1 − ( 1 − 2 ! x 4 + 4 ! x 8 − ⋯ ) ) x 2 ( x − 3 ! x 3 + 5 ! x 5 − ⋯ ) − x 3 = x → 0 lim ( x + 2 ! x 2 + 3 ! x 3 ⋯ ) ( 2 ! x 4 − 4 ! x 8 + 6 ! x 1 2 ⋯ ) − 3 ! x 5 + 5 ! x 7 − 7 ! x 9 + ⋯ = x → 0 lim 2 ! x 5 + 2 ! 2 ! x 6 + 3 ! 2 ! x 7 − O ( x 9 ) − 3 ! x 5 + 5 ! x 7 − 7 ! x 9 + O ( x 1 1 ) = x → 0 lim 2 ! 1 + 2 ! 2 ! x + 3 ! 2 ! x 2 − O ( x 4 ) − 3 ! 1 + 5 ! x 2 − 7 ! x 4 + O ( x 6 ) = − 3 ! 2 ! = − 3 1 ≈ − 0 . 3 3 3 Using Maclaurin series Divide up and down by x 5