L'Hopital's not Allowed

Calculus Level 3

Without using L'Hôpital's rule , calculate

lim x 0 x 2 sin x x 3 ( e x 1 ) ( 1 cos ( x 2 ) ) \large \lim _{ x\rightarrow 0 }{ \frac { { x }^{ 2 }\sin { x } -{ x }^{ 3 } }{ ({ e }^{ x }-1)(1-\cos { ({ x }^{ 2 }) } ) } }


The answer is -0.3333.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 28, 2017

Relevant wiki: Maclaurin Series

We can use Maclaurin series to solve the problem as follows.

L = lim x 0 x 2 sin x x 3 ( e x 1 ) ( 1 cos ( x 2 ) ) Using Maclaurin series = lim x 0 x 2 ( x x 3 3 ! + x 5 5 ! ) x 3 ( 1 + x + x 2 2 ! + 1 ) ( 1 ( 1 x 4 2 ! + x 8 4 ! ) ) = lim x 0 x 5 3 ! + x 7 5 ! x 9 7 ! + ( x + x 2 2 ! + x 3 3 ! ) ( x 4 2 ! x 8 4 ! + x 12 6 ! ) = lim x 0 x 5 3 ! + x 7 5 ! x 9 7 ! + O ( x 11 ) x 5 2 ! + x 6 2 ! 2 ! + x 7 3 ! 2 ! O ( x 9 ) Divide up and down by x 5 = lim x 0 1 3 ! + x 2 5 ! x 4 7 ! + O ( x 6 ) 1 2 ! + x 2 ! 2 ! + x 2 3 ! 2 ! O ( x 4 ) = 2 ! 3 ! = 1 3 0.333 \begin{aligned} L & = \lim_{x\to 0} \frac {x^2\sin x - x^3}{(e^x-1)(1-\cos(x^2))} & \small \color{#3D99F6} \text{Using Maclaurin series} \\ & = \lim_{x\to 0} \frac {x^2 \left(x-\frac {x^3}{3!} + \frac {x^5}{5!} - \cdots\right) - x^3}{\left(1+x+\frac {x^2}{2!} + \cdots -1\right)\left(1- \left(1-\frac {x^4}{2!} + \frac {x^8}{4!} - \cdots\right)\right)} \\ & = \lim_{x\to 0} \frac {-\frac {x^5}{3!} + \frac {x^7}{5!} - \frac {x^9}{7!} + \cdots}{\left(x+\frac {x^2}{2!} + \frac {x^3}{3!} \cdots\right)\left(\frac {x^4}{2!} - \frac {x^8}{4!} + \frac {x^{12}}{6!} \cdots \right)} \\ & = \lim_{x\to 0} \frac {-\frac {x^5}{3!} + \frac {x^7}{5!} - \frac {x^9}{7!} + O(x^{11})}{\frac {x^5}{2!} +\frac {x^6}{2!2!} + \frac {x^7}{3!2!} - O(x^9)} & \small \color{#3D99F6} \text{Divide up and down by }x^5 \\ & = \lim_{x\to 0} \frac {-\frac 1{3!} + \frac {x^2}{5!} - \frac {x^4}{7!} + O(x^6)}{\frac 1{2!} +\frac x{2!2!} + \frac {x^2}{3!2!} - O(x^4)} \\ & = - \frac {2!}{3!} = - \frac 13 \approx \boxed{-0.333} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...