L'Hopital's Rule!

Calculus Level 2

Evaluate

lim x 0 e x e x sin x \lim _{ x\rightarrow 0 }{ \frac { { e }^{ x }-{ e }^{ -x } }{ \sin { x } } }

If the limit does not exist. Type in "99999"


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Dominick Hing
Oct 3, 2014

Because this is an indeterminant form zero over zero, we can use L'Hopital's rule. We evaluate this limit by taking the derivatives of the top and the bottom.

lim x 0 d d x ( e x e x ) d d x ( sin x ) = lim x 0 e x ( e x ) cos x = lim x 0 e x + e x cos x \lim _{ x\rightarrow 0 }{ \frac { \frac { d }{ dx } { (e }^{ x }-{ e }^{ -x }) }{ \frac { d }{ dx } (\sin { x } ) } } =\quad \lim _{ x\rightarrow 0 }{ \frac { { e }^{ x }-(-{ e }^{ -x }) }{ \cos { x } } } =\lim _{ x\rightarrow 0 }{ \frac { { e }^{ x }+{ e }^{ -x } }{ \cos { x } } }

This simplifies to 2 2

Or you can solve it simply using some fundamental limits and a little manipulation.

lim x 0 ( e x e x sin x ) = lim x 0 ( e x 1 ( e x + 1 ) x sin x x ) = lim x 0 ( lim x 0 ( e x 1 x ) + lim x 0 ( e x + 1 x ) 1 ) = 1 + 1 = 2 \lim_{x\to 0} \left( \dfrac{e^x-e^{-x}}{\sin x}\right)\\ =\lim_{x\to 0}\left( \dfrac{\dfrac{e^x-1-(e^{-x}+1)}{x}}{\dfrac{\sin x}{x}}\right)\\ =\lim_{x\to 0}\left( \dfrac{\displaystyle \lim_{x\to 0} \left(\dfrac{e^x-1}{x}\right)+\lim_{-x\to 0} \left(\dfrac{e^{-x}+1}{-x}\right)}{1}\right)=1+1=\boxed{2}

Prasun Biswas - 6 years, 3 months ago

Log in to reply

3 gud 5 me

Trevor Arashiro - 6 years, 2 months ago
Gabriel Vidal
Oct 22, 2014

You can also see the solution by visualizing that sinh ( x ) = e x e x 2 \sinh (x) = \frac{e^x - e^{-x}}{2} so lim x 0 e x e x sin ( x ) = 2 lim x 0 sinh ( x ) sin ( x ) = 2 lim x 0 sinh ( x ) x x sin ( x ) = 2 \lim_{x\to0}\frac{e^x - e^{-x}}{\sin(x)} = 2\lim_{x\to0}\frac{\sinh(x)}{\sin(x)} = 2\lim_{x\to0} \frac{\sinh(x)}{x} \frac{x}{\sin(x)} = 2

by the fundamental trigonometric limit sin ( x ) x \frac{\sin(x)}{x} and sinh ( x ) x \frac{\sinh(x)}{x} when x 0 x \to 0 iquals 1.

I did it exactly by the same way c:

Mikael Marcondes - 6 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...