x → − ∞ lim ( 2 5 x 2 − 3 x + 5 x ) = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Guess i'll have to edit the title now.Nice solution.Upvoted!
ohhhhhhhhhhhhhhhhhhh.......
When we put the value of x directly in the equation we get the limit in an indeterminate form like this : ∞ − ∞
If we put y = − x ,such that when x → − ∞ , y → ∞ , we get the limit as, y → ∞ lim ( 2 5 y 2 + 3 y − 5 y ) Now we can rationalize the limit by multiplying the denominator and the numerator with 2 5 y 2 + 3 y + 5 y , y → ∞ lim 2 5 y 2 + 3 y + 5 y 2 5 y 2 + 3 y − 2 5 y 2 ⇒ y → ∞ lim 2 5 y 2 + 3 y + 5 y 3 y We know that, x → ∞ lim x n 1 = 0 , where n= 1,2,3...... Using the above concept we can take out y from the numerator and denominator and we get the below limit as the final answer, y → ∞ lim 2 5 + y 3 + 5 3 ⇒ 5 + 5 3 ⇒ 1 0 3
PS:I did notice that for x → − ∞ lim ( ( p x ) 2 + q x + p x ) , the limit can be calculated using the following formula , L = 2 p q
Yes, especially for limits, it's best to convert negative infinity to infinity to avoid accidental pitfalls.
You can slightly simplify your work by further having a substitution of z = y 1 .
Problem Loading...
Note Loading...
Set Loading...
Substitute y = -1/x and use L'Hopital.
x → − ∞ lim 2 5 x 2 − 3 x + 5 x = y → 0 + lim y 3 y + 2 5 − 5 = y → 0 + lim 2 3 y + 2 5 3 = 1 0 3