Can L'hopital save you?

Calculus Level 3

lim x ( 25 x 2 3 x + 5 x ) = ? \large \lim_{x \to -\infty }\left(\sqrt{25x^{2} -3x} +5x\right) = \ ?


The answer is 0.3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ben Whitmore
Aug 12, 2015

Substitute y = -1/x and use L'Hopital.

lim x 25 x 2 3 x + 5 x \lim_{x\to -\infty} \sqrt{25x^{2}-3x}+5x = lim y 0 + 3 y + 25 5 y =\lim_{y\to 0^{+}}\frac{\sqrt{3y+25}-5}{y} = lim y 0 + 3 2 3 y + 25 = 3 10 =\lim_{y\to 0^{+}} \frac{3}{2\sqrt{3y+25}}=\frac{3}{10}

Guess i'll have to edit the title now.Nice solution.Upvoted!

Athiyaman Nallathambi - 5 years, 10 months ago

ohhhhhhhhhhhhhhhhhhh.......

Noel Lo - 5 years, 6 months ago

When we put the value of x x directly in the equation we get the limit in an indeterminate form like this : \infty-\infty

If we put y = x y = -x ,such that when x x \to -\infty , y y \to \infty , we get the limit as, lim y ( 25 y 2 + 3 y 5 y ) \lim_{y \to \infty} \left(\sqrt{25y^{2}+3y} -5y \right) Now we can rationalize the limit by multiplying the denominator and the numerator with 25 y 2 + 3 y + 5 y \sqrt{25y^{2}+3y} +5y , lim y 25 y 2 + 3 y 25 y 2 25 y 2 + 3 y + 5 y \lim_{y \to \infty} \frac{25y^{2}+3y -25y^{2}}{\sqrt{25y^{2}+3y} +5y} lim y 3 y 25 y 2 + 3 y + 5 y \Rightarrow \lim_{y \to \infty} \frac{3y}{\sqrt{25y^{2}+3y} +5y} We know that, lim x 1 x n = 0 , where n= 1,2,3...... \lim_{x \to \infty} \frac{1}{x^{n}} = 0 , \text{where n= 1,2,3......} Using the above concept we can take out y y from the numerator and denominator and we get the below limit as the final answer, lim y 3 25 + 3 y + 5 3 5 + 5 3 10 \lim_{y \to \infty} \frac{3}{\sqrt{25 +\frac{3}{y}}+5} \Rightarrow \frac{3}{5+5} \Rightarrow \boxed {\frac{3}{10}}

PS:I did notice that for lim x ( ( p x ) 2 + q x + p x ) \displaystyle \lim_{x \rightarrow -\infty} \left(\sqrt{(px)^{2} + qx}+px \right) , the limit can be calculated using the following formula , L = q 2 p L = \frac{q}{2p}

Moderator note:

Yes, especially for limits, it's best to convert negative infinity to infinity to avoid accidental pitfalls.

You can slightly simplify your work by further having a substitution of z = 1 y z= \frac1y .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...