Solve the limit,
x → 0 lim sin 4 ( x ) 1 − cos ( 1 − cos ( x ) )
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Simplifying the numerator as 1 − cos ( 1 − cos x ) = 1 − cos ( 2 sin 2 2 x ) = 2 sin 2 ( 2 2 sin 2 2 x ) = 2 sin 2 ( sin 2 2 x ) Further x → 0 lim ( sin 4 x 1 − cos ( 1 − cos x ) ) = x → 0 lim ( sin 4 x 2 sin 2 ( sin 2 2 x ) ) = 2 x → 0 lim ⎝ ⎜ ⎛ ( x sin x ⋅ x ) 2 sin 2 2 x sin ( sin 2 2 x ) ⋅ sin 2 2 x ⎠ ⎟ ⎞ 2 = 2 x → 0 lim ( 2 x ⋅ 2 sin 2 x ) 4 = 2 4 2 = 8 1 = 0 . 1 2 5
Using L-Hopital's rule x → 0 lim sin 4 x 1 − cos ( 1 − cos x ) = x → 0 lim 4 sin 3 x ⋅ cos x sin x ⋅ sin ( 1 − cos x ) = 4 1 x → 0 lim ( sin x ( 2 cos 2 x − sin x ) sin x cos ( 1 − cos x ) ) = 4 ⋅ 2 1 = 8 1
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Maclaurin Series
L = x → 0 lim sin 4 x 1 − cos ( 1 − cos x ) = x → 0 lim ( 1 − cos 2 x ) 2 1 − cos ( 1 − cos x ) = x → 0 lim ( 1 − cos x ) 2 ( 1 + cos x ) 2 1 − cos ( 1 − cos x ) = x → 0 lim u 2 ( 2 − u ) 2 1 − cos u = x → 0 lim 4 u 2 − 4 u 3 + u 4 1 − ( 1 − 2 ! u 2 + 4 ! u 4 − ⋯ ) = x → 0 lim 4 u 2 − 4 u 3 + u 4 2 ! u 2 − 4 ! u 4 + 6 ! u 6 − ⋯ = x → 0 lim 4 − 4 u + u 2 2 ! 1 − 4 ! u 2 + 6 ! u 4 − ⋯ = 8 1 = 0 . 1 2 5 Let u = 1 − cos x By Maclaurin series Divide up and down by u 2