L'Hospital's Rule

Calculus Level 3

Solve the limit,

lim x 0 1 cos ( 1 cos ( x ) ) sin 4 ( x ) \lim _{x\to \:0} \frac{1-\cos (1-\cos (x))}{\sin ^4(x)}


The answer is 0.125.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 21, 2018

Relevant wiki: Maclaurin Series

L = lim x 0 1 cos ( 1 cos x ) sin 4 x = lim x 0 1 cos ( 1 cos x ) ( 1 cos 2 x ) 2 = lim x 0 1 cos ( 1 cos x ) ( 1 cos x ) 2 ( 1 + cos x ) 2 Let u = 1 cos x = lim x 0 1 cos u u 2 ( 2 u ) 2 By Maclaurin series = lim x 0 1 ( 1 u 2 2 ! + u 4 4 ! ) 4 u 2 4 u 3 + u 4 = lim x 0 u 2 2 ! u 4 4 ! + u 6 6 ! 4 u 2 4 u 3 + u 4 Divide up and down by u 2 = lim x 0 1 2 ! u 2 4 ! + u 4 6 ! 4 4 u + u 2 = 1 8 = 0.125 \begin{aligned} L & = \lim_{x \to 0} \frac {1-\cos(1-\cos x)}{\sin^4 x} \\ & =\lim_{x \to 0} \frac {1-\cos(1-\cos x)}{(1-\cos^2 x)^2} \\ & =\lim_{x \to 0} \frac {1-\cos(1-\cos x)}{(1-\cos x)^2(1+\cos x)^2} & \small \color{#3D99F6} \text{Let }u = 1-\cos x \\ & =\lim_{x \to 0} \frac {1-\color{#3D99F6} \cos u}{u^2(2-u)^2} & \small \color{#3D99F6} \text{By Maclaurin series} \\ & = \lim_{x \to 0} \frac {1-\color{#3D99F6} \left(1 - \frac {u^2}{2!}+\frac {u^4}{4!}-\cdots \right)}{4u^2-4u^3+u^4} \\ & = \lim_{x \to 0} \frac {\frac {u^2}{2!}-\frac {u^4}{4!}+\frac {u^6}{6!} -\cdots}{4u^2-4u^3+u^4} & \small \color{#3D99F6} \text{Divide up and down by }u^2 \\ & = \lim_{x \to 0} \frac {\frac 1{2!}-\frac {u^2}{4!}+\frac {u^4}{6!} -\cdots}{4-4u+u^2} \\ & = \frac 18 = \boxed{0.125} \end{aligned}

Naren Bhandari
Jul 22, 2018

Simplifying the numerator as 1 cos ( 1 cos x ) = 1 cos ( 2 sin 2 x 2 ) = 2 sin 2 ( 2 sin 2 x 2 2 ) = 2 sin 2 ( sin 2 x 2 ) 1 - \cos \,(1- \cos x) = 1 - \cos \left( 2\sin ^2 \frac{x}{2}\right) = 2 \sin ^2 \left( \frac{2 \sin ^2 \frac{x}{2}}{2}\right) = 2 \sin ^2 \left(\sin ^2 \frac{x}{2}\right) Further lim x 0 ( 1 cos ( 1 cos x ) sin 4 x ) = lim x 0 ( 2 sin 2 ( sin 2 x 2 ) sin 4 x ) = 2 lim x 0 ( sin ( sin 2 x 2 ) sin 2 x 2 sin 2 x 2 ( sin x x x ) 2 ) 2 = 2 lim x 0 ( sin x 2 x 2 2 ) 4 = 2 2 4 = 1 8 = 0.125 \begin{aligned} \lim_{x\to 0} \left( \dfrac{1 - \cos \,(1- \cos x) }{\sin ^4 x} \right) & = \lim_{x\to 0 }\left( \dfrac{2 \sin ^2 \left(\sin ^2 \frac{x}{2}\right) }{\sin ^4 x}\right) \\ & = 2 \lim_{x\to 0} \left(\dfrac{\frac{\sin \left(\sin ^2\frac{x}{2}\right)}{\sin ^2 \frac{x}{2} }\cdot \sin ^2\frac{x}{2}}{\left(\frac{\sin x}{x}\cdot x \right)^2 }\right) ^2 \\ & = 2\lim_{x\to 0} \left( \dfrac{\sin\frac{x}{2}}{\frac{x}{2}\cdot 2}\right) ^4 \\& = \dfrac{2}{2^4} = \dfrac{1}{8}= 0.125\end{aligned}


Using L-Hopital's rule lim x 0 1 cos ( 1 cos x ) sin 4 x = lim x 0 sin x sin ( 1 cos x ) 4 sin 3 x cos x = 1 4 lim x 0 ( sin x cos ( 1 cos x ) sin x ( 2 cos 2 x sin x ) ) = 1 4 2 = 1 8 \lim_{x\to 0} \dfrac{1-\cos \,(1 -\cos x)}{\sin ^4 x}= \lim_{x\to 0}\dfrac{\sin x \cdot \sin\,(1-\cos x)}{4\sin ^3 x \cdot \cos x} = \dfrac{1}{4}\lim_{x\to 0}\left(\dfrac{\sin x \cos (1-\cos x)}{\sin x \,(2\cos ^2x - \sin x)} \right) =\dfrac{1}{4\cdot 2}=\dfrac{1}{8}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...