Light Newton Binomial

Calculus Level 2

lim x 0 ( 1 + x ) 5 ( 1 + 5 x ) x 2 + x 5 = ? \large \lim_{x \to 0} \frac {(1+x)^5-(1+5x)}{x^2+x^5} = ?


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jun 30, 2019

L = lim x 0 ( 1 + x ) 5 ( 1 + 5 x ) x 2 + x 5 Expand ( 1 + x ) 5 = lim x 0 1 + 5 x + 10 x 2 + 10 x 3 + 5 x 4 + x 5 ( 1 + 5 x ) x 2 + x 5 = lim x 0 10 x 2 + 10 x 3 + 5 x 4 + x 5 x 2 + x 5 Divide up and down by x 2 . = lim x 0 10 + 10 x + 5 x 2 + x 3 1 + x 3 = 10 \begin{aligned} L & = \lim_{x \to 0} \frac {{\color{#3D99F6}(1+x)^5}-(1+5x)}{x^2+x^5} & \small \color{#3D99F6} \text{Expand }(1+x)^5 \\ & = \lim_{x \to 0} \frac {{\color{#3D99F6}1+5x + 10x^2 + 10x^3 + 5x^4 + x^5}-(1+5x)}{x^2+x^5} \\ & = \lim_{x \to 0} \frac {10x^2 + 10x^3 + 5x^4 + x^5}{x^2+x^5} & \small \color{#3D99F6} \text{Divide up and down by }x^2. \\ & = \lim_{x \to 0} \frac {10 + 10x + 5x^2 + x^3}{1+x^3} \\ & = \boxed{10} \end{aligned}

You know, this problem is kinda boring.

Ruilin Wang - 1 year, 10 months ago

Exactally,why it could of been presented may ways concluding the same result/solution.for the not so smart☺

mic barr - 1 year, 6 months ago

L = lim x ( 1 + x ) 5 ( 1 + 5 x ) x 2 + x 5 Note that if we plug in 0, we get 0/0. This means we can use L’H o ˆ pital’s rule. = lim x 5 ( 1 + x ) 4 5 2 x + 5 x 4 = lim x 20 ( 1 + x ) 3 2 + 20 x 3 = lim x 20 2 = 10 \begin{aligned} L &= \lim_{x\to\infty}\frac{(1+x)^5-(1+5x)}{x^2+x^5} &\text{Note that if we plug in 0, we get 0/0. This means we can use L'Hôpital's rule.} \\ &= \lim_{x\to\infty}\frac{5(1+x)^4-5}{2x+5x^4} \\ &= \lim_{x\to\infty}\frac{20(1+x)^3}{2+20x^3} \\ &= \lim_{x\to\infty}\frac{20}{2} \\ &= \boxed{10} \end{aligned}

Excellent work!!!

Arpit Bajpai - 1 year, 9 months ago

Thank you!

Samanthak Thiagarajan - 1 year, 1 month ago
Wang Xingyu
Jul 5, 2019

L = lim x 0 ( 1 + x ) 5 ( 1 + 5 x ) x 2 + x 5 L=\lim_{x \to 0} \frac{(1+x)^{5} - (1+5x)}{x^{2}+x^{5}} L = lim x 0 1 + 5 x + C 5 2 x 2 + o ( x 2 ) ( 1 + 5 x ) x 2 + x 5 L=\lim_{x \to 0} \frac{1+5x+C_{5}^{2} x^{2}+o(x^{2}) - (1+5x)}{x^{2}+x^{5}} L = lim x 0 5 × 4 ÷ 2 x 2 + o ( x 2 ) x 2 + x 5 L=\lim_{x \to 0} \frac{ 5\times 4\div 2x^{2}+o(x^{2}) }{x^{2}+x^{5}} L = 10 L=10

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...