Light Source in Cylinder - Part 2

A closed, hollow, opaque, non-reflective container consists of the following parts:

1) Part 1 1 - A disk of radius 1 1 , parallel to the x y xy plane with its center at ( x , y , z ) = ( 0 , 0 , 0 ) (x,y,z) = (0,0,0)
2) Part 2 2 - A disk of radius 1 1 , parallel to the x y xy plane with its center at ( x , y , z ) = ( 0 , 0 , 1 ) (x,y,z) = (0,0,1)
3) Part 3 3 - A finite right circular cylinder capped by the two disks

There is an isotropic light source positioned at ( x , y , z ) = ( 1 2 , 1 2 , 3 4 ) (x,y,z) = \Big( \frac{1}{2}, \frac{1}{2}, \frac{3}{4} \Big) . What fraction of the total emitted power is incident on the half of Part 3 3 which has negative x x coordinates?

Note: The desired answer is a number between 0 0 and 1 1


The answer is 0.1096.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Steven Chase
May 21, 2019

The general equation for calculating the power incident on the surface is (assuming an isotropic radiator):

P = S P t o t a l 4 π D 2 ( n ^ D ^ ) d S P t o t a l = Total radiator power D = Vector from radiator to point on surface d S = Infinitesimal scalar surface area element D ^ = Unit vector in the direction of D n ^ = Unit outward surface normal vector P = \int \int_S \,\, \frac{P_{total}}{4 \pi \, |\vec{D}|^2} \, (\hat{n} \cdot \hat{D}) \, dS \\ P_{total} = \text{Total radiator power} \\ \vec{D} = \text{Vector from radiator to point on surface} \\ dS = \text{Infinitesimal scalar surface area element} \\ \hat{D} = \text{Unit vector in the direction of } \vec{D} \\ \hat{n} = \text{Unit outward surface normal vector }

For the bottom disk (let the radiator position be Q \vec{Q} ):

0 r 1 0 θ 2 π x = r c o s θ y = r s i n θ z = 0 D = ( x Q x , y Q y , z Q z ) n ^ = ( 0 , 0 , 1 ) d S = r d r d θ 0 \leq r \leq 1 \\ 0 \leq \theta \leq 2 \pi \\ x = r \, cos \theta \\ y = r \, sin \theta \\ z = 0 \\ \vec{D} = (x - Q_x, y - Q_y, z - Q_z) \\ \hat{n} = (0,0,-1) \\ dS = r \, dr \, d\theta

For the top disk:

0 r 1 0 θ 2 π x = r c o s θ y = r s i n θ z = 1 D = ( x Q x , y Q y , z Q z ) n ^ = ( 0 , 0 , + 1 ) d S = r d r d θ 0 \leq r \leq 1 \\ 0 \leq \theta \leq 2 \pi \\ x = r \, cos \theta \\ y = r \, sin \theta \\ z = 1 \\ \vec{D} = (x - Q_x, y - Q_y, z - Q_z) \\ \hat{n} = (0,0,+1) \\ dS = r \, dr \, d\theta

For the cylinder:

0 z 1 0 θ 2 π x = c o s θ y = s i n θ z = z D = ( x Q x , y Q y , z Q z ) n ^ = ( x , y , 0 ) d S = d θ d z 0 \leq z \leq 1 \\ 0 \leq \theta \leq 2 \pi \\ x = cos \theta \\ y = sin \theta \\ z = z \\ \vec{D} = (x - Q_x, y - Q_y, z - Q_z) \\ \hat{n} = (x,y,0) \\ dS = d\theta \, dz

Suppose the total radiated power is 1 1 . The results (evaluated numerically) are:

P B = Bottom disk power 0.153256 P T = Top disk power 0.315708 P L = Cylinder power for negative x part 0.109608 P R = Cylinder power for positive x part 0.421557 P_B = \text{Bottom disk power} \approx 0.153256 \\ P_T = \text{Top disk power} \approx 0.315708 \\ P_L = \text{Cylinder power for negative x part} \approx 0.109608 \\ P_R = \text{Cylinder power for positive x part} \approx 0.421557

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...