Lil Bit Complex 2

Geometry Level 4

Find the area of region bounded by x + y 1 , y x 1 , 2 x 2 + 2 y 2 = 1 |x+y|\leq1,|y-x|\leq1,2x^2+2y^2=1 .


The answer is 0.4292.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 19, 2016

{ x + y 1 { y x 1 y x + 1 within a pair of parallel lines 4 5 with x-axis y x 1 { y x 1 y x + 1 within a pair of parallel lines 4 5 with x-axis 2 x 2 + 2 y 2 = 1 x 2 + y 2 = 1 2 a circle centered at origin with radius 1 2 \begin{cases} |x+y| \le 1 & \Rightarrow \begin{cases} y \ge -x-1 \\ y \le -x + 1 \end{cases} & \text{within a pair of parallel lines } -45^\circ \text{ with x-axis} \\ |y-x| \le 1 & \Rightarrow \begin{cases} y \ge x-1 \\ y \le x + 1 \end{cases} & \text{within a pair of parallel lines } 45^\circ \text{ with x-axis} \\ 2x^2 + 2y^2 = 1 & \Rightarrow x^2+y^2 = \frac{1}{2} & \text{a circle centered at origin with radius } \frac{1}{\sqrt{2}} \end{cases}

The four parallel lines and the circle are as in the figure below. Therefore, the bounded area A = A = the area of square with 2 \sqrt{2} side length - the area of the circle with 1 2 \frac{1}{\sqrt{2}} radius.

A = ( 2 ) 2 π ( 1 2 ) 2 = 2 π 2 0.4292 \begin{aligned} A & = \left(\sqrt{2}\right)^2 - \pi \left(\frac{1}{\sqrt{2}} \right)^2 = 2 - \frac{\pi}{2} \approx \boxed{0.4292} \end{aligned}

Same as Chew-Seong Cheong ,( for whom I have up voted,)put differently.
The four lines define a square with diagonal= 2, and along the x-axis and y-axis, intersecting at the origin. So its area is 1 2 2 2 = 2. \frac 1 2*2*2=2. . Area of the circle fully inside it with radius 1 2 , i s π 2 \sqrt{\frac{1} 2} ,~~ is ~~\dfrac \pi 2 . So the difference of the two areas= 2 π 2 = . 4292. 2-\dfrac \pi 2 = .4292.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...