lim (1/(2x) -1/tan(2x))

Calculus Level 2

lim x 0 ( 1 2 x 1 tan 2 x ) = ? \large \lim_{x \to 0} \left(\frac 1{2x} - \frac 1{\tan 2x} \right) = \ ?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 26, 2020

L = lim x 0 ( 1 2 x 1 tan 2 x ) Let u = 2 x = lim u 0 ( 1 u 1 tan u ) = lim u 0 ( 1 u cos u sin u ) = lim u 0 sin u u cos u u sin u A 0/0 case, L’H o ˆ pital’s rule applies. = lim u 0 cos u cos u + u sin u sin u + u cos u Differentiate up and down w.r.t. u = lim u 0 u sin u sin u + u cos u A 0/0 case again = lim u 0 sin u + u cos u cos u + cos u u sin u Differentiate up and down w.r.t. u = 0 2 = 0 \begin{aligned} L & = \lim_{x \to 0} \left(\frac 1{2x} - \frac 1{\tan 2x} \right) & \small \blue{\text{Let }u = 2x} \\ & = \lim_{u \to 0} \left(\frac 1u - \frac 1{\tan u} \right) \\ & = \lim_{u \to 0} \left(\frac 1u - \frac {\cos u}{\sin u} \right) \\ & = \lim_{u \to 0} \frac {\sin u - u \cos u}{u \sin u} & \small \blue{\text{A 0/0 case, L'Hôpital's rule applies.}} \\ & = \lim_{u \to 0} \frac {\cos u - \cos u + u \sin u}{\sin u + u \cos u} & \small \blue{\text{Differentiate up and down w.r.t. }u} \\ & = \lim_{u \to 0} \frac {u \sin u}{\sin u + u \cos u} & \small \blue{\text{A 0/0 case again}} \\ & = \lim_{u \to 0} \frac {\sin u + u \cos u}{\cos u + \cos u - u \sin u} & \small \blue{\text{Differentiate up and down w.r.t. }u} \\ & = \frac 02 = \boxed 0 \end{aligned}


Reference: L'Hôpital's rule

The given expression can be rewritten as

lim x 0 1 2 x tan 2 x 2 x \displaystyle \lim_{x\to 0} \dfrac {1-\frac{2x}{\tan 2x}}{2x}

Under the limit, this assumes the 0 0 \dfrac 00 form, and hence applying L'Hospital's rule repeatedly we get the result 0 \boxed 0 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...