lim x 0 ( 2 x sin 2 x ) / x 3 \lim_{x\to 0}(2x-\sin 2x)/x^3

Calculus Level 2

lim x 0 2 x sin 2 x x 3 = ? \large \lim_{x \to 0} \frac {2x-\sin 2x}{x^3} = ?


The answer is 1.3333333.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 26, 2018

Relevant wiki: Maclaurin Series

L = lim x 0 2 x sin 2 x x 3 By Maclaurin series = lim x 0 2 x ( 2 x ( 2 x ) 3 3 ! + ( 2 x ) 5 5 ! ) x 3 = lim x 0 8 x 3 3 ! 32 x 5 5 ! + 128 x 7 7 ! x 3 Divide up and down by x 3 = lim x 0 8 6 32 x 2 5 ! + 128 x 5 7 ! 1 = 4 3 1.333 \begin{aligned} L & = \lim_{x\to 0} \frac {2x-\color{#3D99F6}\sin 2x}{x^3} & \small \color{#3D99F6} \text{By Maclaurin series} \\ & = \lim_{x\to 0} \frac {2x - \color{#3D99F6}\left(2x - \frac {(2x)^3}{3!} + \frac {(2x)^5}{5!} - \cdots \right)}{x^3} \\ & = \lim_{x\to 0} \frac {\frac {8x^3}{3!} - \frac {32x^5}{5!} + \frac {128x^7}{7!} - \cdots}{x^3} & \small \color{#3D99F6} \text{Divide up and down by }x^3 \\ & = \lim_{x\to 0} \frac {\frac 86 - \frac {32x^2}{5!} + \frac {128x^5}{7!} - \cdots}1 \\ & = \frac 43 \approx \boxed{1.333} \end{aligned}

Blan Morrison
Sep 26, 2018

Relevant wiki: L'Hopital's Rule - Basic

L = 2 x sin ( 2 x ) x 3 L=\frac{2x-\sin(2x)}{x^3} lim x 0 L = 2 x sin ( 2 x ) x 3 \displaystyle\lim_{x\rightarrow 0}L=\frac{2x-\sin(2x)}{x^3} = 2 2 cos ( 2 x ) 3 x 2 =\frac{2-2\cos(2x)}{3x^2} = 4 sin ( 2 x ) 6 x =\frac{4\sin(2x)}{6x} = 8 cos ( 2 x ) 6 = 8 6 = 1.333 =\frac{8\cos(2x)}{6}=\frac{8}{6}=\boxed{1.333\dots}

I don't know why this happens, but if there is any value besides 2 x 2x , the limit goes to infinity, but L'Hopital's says otherwise. Can someone please explain?

Blan Morrison - 2 years, 8 months ago

Log in to reply

I don't understand what you mean. I googled "graph (3x-sin(3x))/x^3" and at '0' it is 4.5 (9/2), which is precisely what L'Hopital's predicts.

I tried "graph (4x-sin(4x))/x^3" and "graph (5x-sin(5x))/x^3" and they too returned a finite value at '0'.

PS: Don't just change one of the "2x". If for instance you do ( 3 x s i n ( 2 x ) ) x 3 \frac{\left(3x-sin(2x)\right)}{x^3} , on the 1st derivative you get ( 3 2 c o s ( 2 x ) ) 3 x 2 \frac{\left(3-2cos(2x)\right)}{3x^2} which evaluated at '0' is 1 0 \frac{1}{0} , and therefore you can not continue to apply L'Hopital.

P S - 2 years, 6 months ago

Log in to reply

That's where I went wrong; thank you! Two months ago, I didn't realize it applied only to 0/0 and ∞/∞.

Blan Morrison - 2 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...