Lim, sup, and inf

Calculus Level 2

Let x n x_n be the sequence

2 , 2 1 / 2 , 2 1 / 3 , 2 1 / 4 , 2 1 / 5 , 2 1 / 6 , . 2,\ -2^{1/2},\ 2^{1/3},\ -2^{1/4},\ 2^{1/5},\ -2^{1/6},\ \ldots.

What are the values of

inf x n , lim inf n x n , lim n x n , lim sup n x n , sup x n ? \inf x_n, \ \ \liminf_{n\to\infty} x_n, \ \ \lim_{n\to\infty} x_n, \ \ \limsup_{n\to\infty} x_n, \ \ \sup x_n \, ?

Notation: In the choices, DNE \text{DNE} means "does not exist."

1 , 0 , DNE , 0 , 1 -1,0,\text{DNE},0,1 1 , 1 , 0 , 1 , 1 -1,-1,0,1,1 2 1 / 2 , 0 , 0 , 0 , 2 -2^{1/2}, 0, 0, 0, 2 2 1 / 2 , DNE , DNE , DNE , 2 -2^{1/2}, \text{DNE}, \text{DNE}, \text{DNE}, 2 1 , 1 , DNE , 1 , 1 -1,-1, \text{DNE}, 1, 1 2 1 / 2 , 2 1 / 2 , DNE , 2 , 2 -2^{1/2},-2^{1/2},\text{DNE},2,2 2 1 / 2 , 1 , DNE , 1 , 2 -2^{1/2}, -1, \text{DNE}, 1, 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ferenets Roman
May 4, 2019

Inf is 2 1 / 2 -2^{1/2} cause sequence with even indexes is increasing, so first element is the least.Same approach for sup x n x_n ,but for elements with odd indexes.Lim of x n x_n doesn't exist cause sequence will bounce between -1 and 1 as n n\rightarrow\infty .And lim of subsequences is clearly -1 and 1 respectively, as lim of a 1 / n a^{1/n} for a > = 1 >=1 is 1.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...