A Calculus Problem from Aly Ahmed 200716a

Calculus Level 3

lim x 0 x 2 sin 2 x x 2 tan 2 x = ? \lim_{x \to 0} \frac {x^2-\sin^2 x}{x^2 - \tan^2 x} = \ ?


The answer is -0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 16, 2020

L = lim x 0 x 2 sin 2 x x 2 tan 2 x = lim x 0 ( x sin x ) ( x + sin x ) ( x tan x ) ( x + tan x ) By Maclaurin series = lim x 0 ( x ( x x 3 6 + x 5 120 ) ) ( x + ( x x 3 6 + x 5 120 ) ) ( x ( x + x 3 3 + 2 x 5 15 + ) ) ( x + ( x + x 3 3 + 2 x 5 15 + ) ) = lim x 0 ( x 3 6 x 5 120 + x 7 5040 ) ( 2 x x 3 6 + x 5 120 ) ( x 3 3 2 x 5 15 17 x 7 315 ) ( 2 x + x 3 3 + 2 x 5 15 + ) Divide up and down by x 4 = lim x 0 ( 1 6 x 2 120 + x 5 5040 ) ( 2 x 2 6 + x 4 120 ) ( 1 3 2 x 2 15 17 x 4 315 ) ( 2 + x 3 3 + 2 x 4 15 + ) = 1 6 × 2 1 3 × 2 = 1 2 = 0.5 \begin{aligned} L & = \lim_{x \to 0} \frac {x^2 - \sin^2 x}{x^2 - \tan^2 x} \\ & = \lim_{x \to 0} \frac {(x - \sin x)(x+\sin x)}{(x- \tan x)(x+\tan x)} & \small \blue{\text{By Maclaurin series}} \\ & = \lim_{x \to 0} \frac {\left(x - \left(x - \frac {x^3}6+\frac {x^5}{120}-\cdots\right)\right) \left(x + \left(x - \frac {x^3}6+\frac {x^5}{120}-\cdots\right)\right)}{\left(x - \left(x +\frac {x^3}3+\frac {2x^5}{15}+\cdots\right)\right) \left(x + \left(x + \frac {x^3}3+\frac {2x^5}{15} +\cdots\right)\right)} \\ & = \lim_{x \to 0} \frac {\left(\frac {x^3}6 - \frac {x^5}{120}+ \frac {x^7}{5040} - \cdots\right) \left(2x - \frac {x^3}6+\frac {x^5}{120}-\cdots\right)}{\left(-\frac {x^3}3 - \frac {2x^5}{15} - \frac {17x^7}{315} - \cdots\right) \left(2x + \frac {x^3}3 +\frac {2x^5}{15} + \cdots\right)} & \small \blue{\text{Divide up and down by }x^4} \\ & = \lim_{x \to 0} \frac {\left(\frac 16 - \frac {x^2}{120}+ \frac {x^5}{5040} - \cdots\right) \left(2 - \frac {x^2}6+\frac {x^4}{120}-\cdots\right)}{\left(-\frac 13 - \frac {2x^2}{15} - \frac {17x^4}{315} - \cdots\right) \left(2 + \frac {x^3}3+\frac {2x^4}{15} + \cdots\right)} \\ & = \frac {\frac 16 \times 2}{-\frac 13 \times 2} = - \frac 12 = \boxed{-0.5} \end{aligned}

In the given limit, the expression assumes a 0 0 \dfrac 00 form. So applying L'Hospital's rule repeatedly we get the limit as

lim x 0 2 sec 2 x + 3 sec 4 x = 0.5 \displaystyle \lim_{x \to 0} \dfrac {-2}{\sec^2 x+3\sec^4 x}=\boxed {-0.5} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...