AA's Limit Problem #?

Calculus Level 3

lim x π / 3 2 sin ( x sec x ) 1 + sec x 1 + cos x 3 sin x = ? \lim_{x \to \pi/3} \frac {2\sin (x\sec x) - \sqrt{1+\sec x}}{1+\cos x - \sqrt 3 \sin x} = \ ?


The answer is 3.82645.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 22, 2020

L = lim x π / 3 2 sin ( x sec x ) 1 + sec x 1 + cos x 3 sin x A 0/0 case, L’H o ˆ pital’s rule applies. = lim x π / 3 2 cos ( x sec x ) ( sec x + x sec x tan x ) sec x tan x 2 1 + sec x sin x 3 cos x Differentiate up and down w.r.t. x = 2 cos 2 π 3 ( 2 + π 3 2 3 ) 1 3 2 3 2 = 3 + 2 π 3 3.83 \begin{aligned} L & = \lim_{x \to \pi/3} \frac {2\sin (x \sec x) -\sqrt{1+\sec x}}{1+\cos x - \sqrt 3 \sin x} & \small \blue{\text{A 0/0 case, L'Hôpital's rule applies.}} \\ & = \lim_{x \to \pi/3} \frac {2\cos (x \sec x)(\sec x + x \sec x \tan x) - \frac {\sec x \tan x}{2\sqrt{1+\sec x}}}{-\sin x - \sqrt 3 \cos x} & \small \blue{\text{Differentiate up and down w.r.t. }x} \\ & = \frac {2 \cos \frac {2\pi}3\left(2+\frac \pi 3 \cdot 2 \cdot \sqrt 3\right)-1}{- \frac {\sqrt 3}2 - \frac {\sqrt 3}2} \\ & = \sqrt 3 + \frac {2\pi}3 \approx \boxed{3.83} \end{aligned}


Reference: L'Hôpital's rule

@Aly Ahmed , I believe you can see the LaTex code in the problem question. All function must start with \ for example: \frac (for fraction), \sin x, \cos x, \tan x, \sec x, \lim ... You must leave a space between \sin and x, \cos and x, ... Use \ [ and \ ] instead of \ ( and \ ). Don't clamp the entire question in the title.

Chew-Seong Cheong - 10 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...