lim n 5 n ( 5 3 + 2 sin x ) n + 2 = 1 y \lim_{n \to \infty} \frac{5 ^n}{\left(5-\sqrt{3}+2\sin x^\circ \right)^{n+2}} = \frac{1}{y}

Calculus Level 2

For a certain positive real number 0 x 90 0 \leq x \leq 90 , there is a real number y y such that

lim n 5 n ( 5 3 + 2 sin x ) n + 2 = 1 y . \lim_{n \to \infty} \frac{5 ^n}{\left(5-\sqrt{3}+2\sin x^\circ \right)^{n+2}} = \frac{1}{y}.

What is the value of x + y x + y ?

85 80 95 90

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Milo Štěpán
May 11, 2014

First split limit into: lim n 5 n ( 5 3 + 2 sin ( x ) ) n + 2 = lim n ( 5 5 3 + 2 sin ( x ) ) n 1 ( 5 3 + 2 sin ( x ) ) 2 \lim _{ n\rightarrow \infty }{ \frac { { 5 }^{ n } }{ { (5-\sqrt { 3 } +2\cdot \sin { (x) } ) }^{ n+2 } } } =\lim _{ n\rightarrow \infty }{ { (\frac { 5 }{ 5-\sqrt { 3 } +2\cdot \sin { (x } ) } ) }^{ n }\cdot \frac { 1 }{ { (5-\sqrt { 3 } +2\cdot \sin { (x) } ) }^{ 2 } } } . . ..

Since limit must be expressed as 1 y \frac { 1 }{ y } (y is real number), it can not be zero.
. . ..
Now observe that factor on the left will not converge to 0 only if it's numerator equals it's denominator. . . ..
Considering this, sin ( x ) \sin { (x) } must equal to 3 2 \frac { \sqrt { 3 } }{ 2 } therefore: x = 60 x={ 60 }^{ \circ } . . ..
Limit then equals to 1 25 \frac { 1 }{ 25 } and x + y = 85 x+y=\boxed { 85 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...