lim n 5 a n + 6 a n 1 = 6 \lim_{n \to \infty} \frac{5a_n+6}{a_n-1}=6

Calculus Level 1

If sequence { a n } \{a_n\} satisfies lim n 5 a n + 6 a n 1 = 6 , \lim_{n \to \infty} \frac{5a_n+6}{a_n-1}=6, what is the value of lim n a n ? \displaystyle \lim_{n \to \infty}a_n?

11 12 9 10

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Anish Puthuraya
Mar 10, 2014

lim n 5 a n + 6 a n 1 = 6 \lim_{n\to\infty}\frac{5a_n+6}{a_n-1} = 6

5 lim n a n + 6 lim n a n 1 = 6 \frac{5\lim_{n\to\infty} a_n+6}{\lim_{n\to\infty} a_n-1} = 6

Let lim n a n = L \displaystyle\lim_{n\to\infty}a_n = L

Thus,
5 L + 6 L 1 = 6 \frac{5L+6}{L-1} = 6

L = 12 \Rightarrow \boxed{L=12}

Benito Kestelman
Aug 3, 2014

lim n 5 a n + 6 a n 1 = 6 lim n 5 a n 5 + 11 a n 1 = 6 lim n n 5 ( a n 1 ) + 11 a n 1 = 6 lim n 5 ( a n 1 ) a n 1 + 11 a n 1 = 6 lim n 5 + 11 a n 1 = 6 5 + lim n 11 a n 1 = 6 lim n 11 a n 1 = 1 a n 1 = 11 a n = 12 \lim _{ n\rightarrow \infty }{ \frac { 5{ a }_{ n }+6 }{ { a }_{ n }-1 } =6 } \\ \lim _{ n\rightarrow \infty }{ \frac { 5{ a }_{ n }-5+11 }{ { a }_{ n }-1 } =6 } \\ \lim _{ n_{ n }\rightarrow \infty }{ \frac { 5({ a }_{ n }-1)+11 }{ { a }_{ n }-1 } =6 } \\ \lim _{ n\rightarrow \infty }{ \frac { 5({ a }_{ n }-1) }{ { a }_{ n }-1 } +\frac { 11 }{ { a }_{ n }-1 } =6 } \\ \lim _{ n\rightarrow \infty }{ 5+\frac { 11 }{ { a }_{ n }-1 } =6 } \\ 5+\lim _{ n\rightarrow \infty }{ \frac { 11 }{ { a }_{ n }-1 } =6 } \\ \lim _{ n\rightarrow \infty }{ \frac { 11 }{ { a }_{ n }-1 } =1 } \\ { a }_{ n }-1=11\\ { a }_{ n }=12

Hello,peace be upon you,

as for the sequence {an}, as it is approaches to infiniy f {an},

5an + 6 / (an -1) = 6

5an + 6 = 6(an -1)

5an = 6an - 6 - 6

5an - 6an = -12

-an = -12

an = 12,

therefore the value of an = 12 as it is approaches to infinity...

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...