lim x \lim_{x \to \infty}

Calculus Level 2

lim x 2 x sin b 2 x = ? \large \lim_{x\rightarrow\infty}{2^x\sin \dfrac{b}{2^x}}=?

b b 0 -1 \infty 1 2 b 2^b Limit does not exist

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

lim x 2 x sin b 2 x = lim x b sin b 2 x b 2 x = b × lim u 0 sin ( u ) u = b × 1 = b \large \displaystyle\lim_{x \to \infty} 2^{x}\sin \dfrac{b}{2^{x}} = \lim_{x \to \infty} b \dfrac{\sin \dfrac{b}{2^{x}}}{\dfrac{b}{2^{x}}} = b \times \lim_{u \to 0} \dfrac{\sin(u)}{u} = b \times 1 = \boxed{b} ,

where u = b 2 x 0 u = \dfrac{b}{2^{x}} \to 0 as x x \to \infty .

Chew-Seong Cheong
Dec 12, 2017

Relevant wiki: Maclaurin Series

L = lim x 2 x sin b 2 x Using Maclaurin series = lim x 2 x ( b 1 ! 2 x b 3 3 ! 2 3 x + b 5 5 ! 2 5 x b 7 7 ! 2 7 x + ) = lim x ( b b 3 3 ! 2 2 x + b 5 5 ! 2 4 x b 7 7 ! 2 6 x + ) = b \begin{aligned} L & = \lim_{x \to \infty} 2^x \color{#3D99F6} \sin \frac b{2^x} & \small \color{#3D99F6} \text{Using Maclaurin series} \\ & = \lim_{x \to \infty} 2^x \color{#3D99F6} \left( \frac b{1! 2^x} - \frac {b^3}{3! 2^{3x}} + \frac {b^5}{5! 2^{5x}} - \frac {b^7}{7! 2^{7x}} + \cdots \right) \\ & = \lim_{x \to \infty} \left(b - \frac {b^3}{3! 2^{2x}} + \frac {b^5}{5! 2^{4x}} - \frac {b^7}{7! 2^{6x}} + \cdots \right) \\ & = \boxed{b} \end{aligned}

@Md Mehedi Hasan , it may not be nice to make the font too big. It looks childish and not professional. Don't use \LARGE just \large will do.

Chew-Seong Cheong - 3 years, 6 months ago

Log in to reply

Thank you for your advice. I keep it mind for later.

Md Mehedi Hasan - 3 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...