Isn't This 0/0?

Calculus Level 5

lim x π 2 sin x ( sin x ) sin x 1 sin x + ln ( sin x ) = ? \large \displaystyle \lim_{x \to \frac\pi2} \dfrac{\sin x - (\sin x)^{\sin x}}{1-\sin x +\ln (\sin x)}= \ ?

1 Limit does not exist 0 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rohit Ner
Oct 8, 2015

The limit can be rewritten as
lim x 1 x x x 1 x + ln x = lim x 1 1 x x ( 1 + ln x ) 1 + 1 x = lim x 1 x x ( 1 + ln x ) 2 x x 1 1 x 2 = lim x 1 x 2 ( x x ( 1 + ln x ) 2 + x x 1 ) = 2 \begin{aligned} \lim _{ x\rightarrow 1 }{ \frac { x-{ x }^{ x } }{ 1-x+\ln { x } } } &=\lim _{ x\rightarrow 1 }{ \frac { 1-{ x }^{ x }\left( 1+\ln { x } \right) }{ -1+\frac { 1 }{ x } } } \\&=\lim _{ x\rightarrow 1 }{ \frac { -{ x }^{ x }{ \left( 1+\ln { x } \right) }^{ 2 }-{ x }^{ x-1 } }{ -\frac { 1 }{ { x }^{ 2 } } } } \\&=\lim _{ x\rightarrow 1 }{ { x }^{ 2 } } \left( { x }^{ x }{ \left( 1+\ln { x } \right) }^{ 2 }+{ x }^{ x-1 } \right) \\&\Huge\color{#3D99F6}{=\boxed{2}} \end{aligned}

Refer L'Hôpital's Rule

Ramez Hindi - 5 years, 8 months ago

Log in to reply

Oh my god!L'Hopital is meant to make life easier. Is this the only way to solve it without using the rule?

Rohit Ner - 5 years, 8 months ago

i have a long solution without using L'Hopital Rule or Series expansion . i tried to add it here but i failed due to the $ sign

Ramez Hindi - 5 years, 8 months ago

Log in to reply

Long but yeah from basics liked!!

rajdeep brahma - 3 years, 2 months ago

Good solution sir!!+1

rajdeep brahma - 3 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...