But What Is b b ?

Calculus Level 2

lim a b a a b b a b = ? \large \displaystyle\lim_{a\to b}\frac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}} = \, ?

Take b > 0 b> 0 .

b b 2 b 2b 3 b 3b 4 b 4b 5 b 5b

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Sahil Bansal
Mar 22, 2016

y = lim a b ( a a b b a b ) y=\large \displaystyle\lim_{a\to b} \left( \dfrac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}} \right)

Let x = a , z = b x=\sqrt{a}, z=\sqrt{b}

The above limit can then be written as:

y = lim x z x 3 z 3 x z y=\lim_{x\rightarrow z}\frac{x^{3}-z^{3}}{x-z}

Using the formula of limits: lim x a x n a n x a = n a n 1 \lim_{x\rightarrow a}\frac{x^{n}-a^{n}}{x-a}=na^{n-1}

We get, y = 3 z 2 = 3 b y=3z^{2}=\boxed{3b}

(Upvoted) Nice method! Inspiriting!

展豪 張 - 5 years, 2 months ago
Akhil Bansal
Mar 22, 2016

lim a b ( a a b b a b ) \large \displaystyle\lim_{a\to b} \left( \dfrac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}} \right)
Applying L'Hôpital's Rule , lim a b ( 3 2 a 1 2 a ) \large \displaystyle\lim_{a\to b} \left(\dfrac{\frac{3}{2}\sqrt{a}}{\frac{1}{2\sqrt{a}}}\right)
lim a b ( 3 a ) = 3 b \large \displaystyle \lim_{a \to b} \ ( 3a ) = \boxed{ 3b}

Note : Here , b is a constant and its derivative with respect to a will be 0.

Moderator note:

Simple standard approach.

Did the same way, but wasn't sure it was the way to go. I am not always sure with limits.

Peter van der Linden - 3 years, 7 months ago
Harsh Khatri
Mar 22, 2016

lim a b a 3 2 b 3 2 a b \displaystyle \lim_{a\rightarrow b} \frac{a^{\frac{3}{2}}-b^{\frac{3}{2}}}{\sqrt{a}-\sqrt{b}}

lim a b ( a b ) ( a + ( a b ) + b ) a b \displaystyle \lim_{a\rightarrow b} \frac{ (\sqrt{a} -\sqrt{b} )( a+ \sqrt(ab) +b)} {\sqrt{a} - \sqrt{b}}

lim a b ( a + a b + b ) \displaystyle \lim_{a\rightarrow b} (a +\sqrt{ab} + b)

b + b × b + b = 3 b \displaystyle \Rightarrow b + \sqrt{b \times b} + b = \boxed{3b}

Aquilino Madeira
Apr 20, 2016

lim a b a a b b a + b = = lim a b a a b b a + b × a b a b = lim a b a 2 + a a b b a b b 2 a b = lim a b a 2 b 2 + a b ( a b ) a b = lim a b ( a b ) ( a + b ) + a b ( a b ) a b = lim a b ( a b ) ( a + b + a b ) a b = lim a b ( a + b + a b ) = b + b + b × b = 3 b \begin{array}{l} \mathop {\lim }\limits_{a \to b} \frac{{a\sqrt a - b\sqrt b }}{{\sqrt a + \sqrt b }} = \\ = \mathop {\lim }\limits_{a \to b} \frac{{a\sqrt a - b\sqrt b }}{{\sqrt a + \sqrt b }} \times \frac{{\sqrt a - \sqrt b }}{{\sqrt a - \sqrt b }}\\ = \mathop {\lim }\limits_{a \to b} \frac{{{a^2} + a\sqrt {ab} - b\sqrt {ab} - {b^2}}}{{a - b}}\\ = \mathop {\lim }\limits_{a \to b} \frac{{{a^2} - {b^2} + \sqrt {ab} \left( {a - b} \right)}}{{a - b}}\\ = \mathop {\lim }\limits_{a \to b} \frac{{\left( {a - b} \right)\left( {a + b} \right) + \sqrt {ab} \left( {a - b} \right)}}{{a - b}}\\ = \mathop {\lim }\limits_{a \to b} \frac{{\left( {a - b} \right)\left( {a + b + \sqrt {ab} } \right)}}{{a - b}}\\ = \mathop {\lim }\limits_{a \to b} \left( {a + b + \sqrt {ab} } \right)\\ = b + b + \sqrt {b \times b} \\ = 3b \end{array}

Harshit Sahu
Mar 22, 2016

Remove square root and convert it into a^(3/2)-b(3^2)....from there we can see that the above expression is taking the form of formula for a cube- b cube expand it... Put the value and get the ans

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...