Limit

Calculus Level 3

lim x 0 sin 1 ( x ) tan 1 ( x ) sin ( x ) log ( 1 + x ) = ? \large \lim_{x \to 0} \frac {\sin^{-1}(x) - \tan^{-1} (x)}{\sin (x) \log (1+x)} = \ ?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 30, 2017

Relevant wiki: L'Hopital's Rule - Basic

L = lim x 0 sin 1 x tan 1 x sin x log ( 1 + x ) A 0/0 case, L’H o ˆ pital’s rule applies. = lim x 0 1 1 x 2 1 1 + x 2 cos x log ( 1 + x ) + sin x 1 + x Again a 0/0 case = x ( 1 x 2 ) 3 / 2 + 2 x ( 1 + x 2 ) 2 sin x log ( 1 + x ) + cos x 1 + x + cos x 1 + x sin x ( 1 + x ) 2 Again differentiate up and down w.r.t. x = 0 2 = 0 \begin{aligned} L & = \lim_{x \to 0} \frac {\sin^{-1}x-\tan^{-1}x}{\sin x \log(1+x)} & \small \color{#3D99F6} \text{A 0/0 case, L'Hôpital's rule applies.} \\ & = \lim_{x \to 0} \frac {\frac 1{\sqrt{1-x^2}}-\frac 1{1+x^2}}{\cos x \log (1+x) + \frac {\sin x}{1+x}} & \small \color{#3D99F6} \text{Again a 0/0 case} \\ & = \frac {\frac x{(1-x^2)^{3/2} }+\frac {2x}{(1+x^2)^2}}{-\sin x\log(1+x) + \frac {\cos x}{1+x} + \frac {\cos x}{1+x}-\frac {\sin x}{(1+x)^2}} & \small \color{#3D99F6} \text{Again differentiate up and down w.r.t. }x \\ & = \frac 02 = \boxed 0 \end{aligned}

Here d/dx of sinxlog(1+x) is wrong

Akshaya Das - 2 years, 6 months ago

Log in to reply

Thanks, I have changed the solution.

Chew-Seong Cheong - 2 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...