Infinity - infinity to the power of infinity

Calculus Level 3

lim x ( x 2 + 2 x + 3 x 2 + 3 ) x = ? \lim_{x\to \infty} \left(\sqrt{x^2+2x+3} - \sqrt{x^2+3}\right)^x = \ ?

1 e \frac 1 {\sqrt e} 1 e \frac 1e 1 1 Does not exist

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 28, 2020

L = lim x ( x 2 + 2 x + 3 x 2 + 3 ) x = lim x exp ( ln ( x 2 + 2 x + 3 x 2 + 3 ) x ) = exp ( lim x x ln ( x 2 + 2 x + 3 x 2 + 3 ) ) = exp ( lim x ln ( 2 x x 2 + 2 x + 3 + x 2 + 3 ) 1 x ) A 0/0 case, L’H o ˆ pital’s rule applies. = exp ( lim x x 2 + 2 x + 3 + x 2 + 3 2 x ( 2 x 2 + 2 x + 3 + 2 x 2 + 3 2 x ( x + 1 x 2 + 2 x + 3 + x x 2 + 3 ) ( x 2 + 2 x + 3 + x 2 + 3 ) 2 ) ( x 2 ) ) = exp ( lim x 1 2 ( x 2 + 2 x + 3 + x 2 + 3 x 2 + x x 2 + 2 x + 3 x 2 x 2 + 3 ) ) = exp ( lim x 1 2 ( ( x + 3 ) x 2 + 3 + 3 x 2 + 2 x + 3 ( x 2 + 2 x + 3 ) ( x 2 + 3 ) ) ) = exp ( lim x 1 2 ( ( 1 + 3 x ) 1 + 3 x 2 + 3 x 2 x 2 + 2 x + 3 ( 1 + 2 x + 3 x 2 ) ( 1 + 3 x 2 ) ) ) = e 1 2 = 1 e \begin{aligned} L & = \lim_{x \to \infty} \left(\sqrt{x^2+2x+3} - \sqrt{x^2+3} \right)^x \\ & = \lim_{x \to \infty} \exp \left(\ln\left(\sqrt{x^2+2x+3} - \sqrt{x^2+3} \right)^x\right) \\ & = \exp \left(\lim_{x \to \infty} x\ln\left(\sqrt{x^2+2x+3} - \sqrt{x^2+3} \right)\right) \\ & = \exp \left(\lim_{x \to \infty} \frac {\ln\left(\frac {2x}{\sqrt{x^2+2x+3} + \sqrt{x^2+3}}\right)}{\frac 1x} \right) \quad \quad \small \blue{\text{A 0/0 case, L'Hôpital's rule applies.}} \\ & = \small \exp \left(\lim_{x \to \infty} \frac {\sqrt{x^2+2x+3} + \sqrt{x^2+3}}{2x} \left(\frac {2\sqrt{x^2+2x+3} + 2\sqrt{x^2+3}-2x\left(\frac {x+1}{\sqrt{x^2+2x+3}} + \frac x{\sqrt{x^2+3}}\right)}{(\sqrt{x^2+2x+3} + \sqrt{x^2+3})^2} \right) (-x^2)\right) \\ & = \small \exp \left(\lim_{x \to \infty} - \frac 12 \left(\sqrt{x^2+2x+3} + \sqrt{x^2+3} - \frac {x^2+x}{\sqrt{x^2+2x+3}} - \frac {x^2}{\sqrt{x^2 +3}}\right) \right) \\ & = \small \exp \left(\lim_{x \to \infty} -\frac 12 \left(\frac {(x+3)\sqrt{x^2+3}+3\sqrt{x^2+2x+3}}{\sqrt{(x^2+2x+3)(x^2+3)}}\right) \right) \\ & = \small \exp \left(\lim_{x \to \infty} -\frac 12 \left(\frac {\left(1+\frac 3x\right)\sqrt{1+\frac 3{x^2}}+\frac 3{x^2} \sqrt{x^2+2x+3}}{\sqrt{\left(1+\frac 2x+\frac 3{x^2}\right) \left(1+\frac 3{x^2} \right)}}\right) \right) \\ & = e^{-\frac 12} = \boxed{\frac 1{\sqrt e}} \end{aligned}


Reference: L'Hôpital's rule

Substituting x x by 1 h \dfrac{1}{h} we reduce the given expression as

( 1 + 2 h + 3 h 2 1 + 3 h 2 h ) 1 h ( 1 h 2 ) 1 h \left (\dfrac{\sqrt {1+2h+3h^2}-\sqrt {1+3h^2}}{h}\right) ^{\frac{1}{h}}\approx (1-\frac{h}{2})^{\frac{1}{h}}

As x x approaches , h \infty,h approaches 0 0 . Hence the required limit is e lim h 0 ln ( 1 h 2 ) h = e 1 2 = 1 e e^{\displaystyle \lim_{h \to 0} \dfrac{\ln (1-\frac{h}{2})}{h}}=e^{-\frac{1}{2}}=\dfrac{1}{\sqrt e} .

Your \approx is doing a lot of work there. Could you justify that approximation?

Richard Desper - 1 year ago

Log in to reply

Using binomial expansion of the square roots, retaining terms upto the order of two and simplifying I got the result.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...