Limit

Calculus Level 4

lim n ln [ e n ( n n + 1 ) n 2 ] = ? \large \lim_{n\to \infty} \ln \left[ e^n \left( \dfrac n{n+1} \right)^{n^2} \right] = \ ?


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

This limit can be written as

lim n ( ln ( e n ) + ln ( n n + 1 ) n 2 ) = lim n ( n + n 2 ln ( n n + 1 ) ) = \displaystyle \lim_{n \to \infty} \left(\ln(e^{n}) + \ln \left(\dfrac{n}{n + 1}\right)^{n^{2}}\right) = \lim_{n \to \infty} \left(n + n^{2} \ln \left(\dfrac{n}{n + 1}\right) \right) =

lim n ( n n 2 ln ( n + 1 n ) ) = lim n ( n n 2 ln ( 1 + 1 n ) ) \displaystyle \lim_{n \to \infty} \left(n - n^{2} \ln \left(\dfrac{n + 1}{n}\right)\right) = \lim_{n \to \infty} \left(n - n^{2} \ln\left(1 + \dfrac{1}{n}\right) \right) .

Now the Maclaurin series for ln ( 1 + x ) \ln(1 + x) is

ln ( 1 + x ) = x x 2 2 + x 3 3 x 4 4 + . . . \ln(1 + x) = x - \dfrac{x^{2}}{2} + \dfrac{x^{3}}{3} - \dfrac{x^{4}}{4} + ... for 1 < x 1 -1 \lt x \le 1 .

So with x = 1 n x = \dfrac{1}{n} our limit becomes

lim n ( n n 2 ( 1 n 1 2 n 2 + 1 3 n 3 1 4 n 4 + . . . ) ) = lim n ( n n + 1 2 1 3 n + 1 4 n 2 . . . . ) = \displaystyle \lim_{n \to \infty} \left(n - n^{2}\left(\dfrac{1}{n} - \dfrac{1}{2n^{2}} + \dfrac{1}{3n^{3}} - \dfrac{1}{4n^{4}} + ... \right) \right) = \lim_{n \to \infty} \left(n - n + \dfrac{1}{2} - \dfrac{1}{3n} + \dfrac{1}{4n^{2}} - .... \right) =

lim n ( 1 2 + O ( 1 n ) ) = 1 2 = 0.5 \displaystyle \lim_{n \to \infty} \left(\dfrac{1}{2} + O\left(\dfrac{1}{n}\right) \right) = \dfrac{1}{2} = \boxed{0.5} .

Sir, I used ln ( n n + 1 ) = ln ( 1 1 n + 1 ) \ln(\frac{n}{n+1})=\ln(1-\frac{1}{n+1}) and then the series expansion, but somehow I am not able to reach the answer. Can you help me out?

Akshay Yadav - 4 years ago

Log in to reply

That will work too. In this case the limit will be

lim n ( n + n 2 ln ( 1 1 n + 1 ) ) \displaystyle\lim_{n \to \infty}\left(n + n^{2}\ln\left(1 - \dfrac{1}{n + 1}\right)\right) .

Then using x = 1 n + 1 x = -\dfrac{1}{n + 1} in the series expansion the limit becomes

lim n ( n n 2 ( 1 n + 1 + 1 2 ( n + 1 ) 2 + 1 3 ( n + 1 ) 2 + . . . ) ) = \displaystyle\lim_{n \to \infty}\left(n - n^{2}\left(\dfrac{1}{n + 1} + \dfrac{1}{2(n + 1)^{2}} + \dfrac{1}{3(n + 1)^{2}} + ... \right)\right) =

lim n ( n n 2 n + 1 n 2 2 ( n + 1 ) 2 n 2 3 ( n + 1 ) 3 + . . . . ) = \displaystyle\lim_{n \to \infty} \left(n - \dfrac{n^{2}}{n + 1} - \dfrac{n^{2}}{2(n + 1)^{2}} - \dfrac{n^{2}}{3(n + 1)^{3}} + .... \right) =

lim n ( n n + 1 1 2 ( 1 + 1 n ) 2 1 3 n ( 1 + 1 n ) 3 . . . . ) = 1 1 2 = 1 2 \displaystyle\lim_{n \to \infty} \left(\dfrac{n}{n + 1} - \dfrac{1}{2(1 + \frac{1}{n})^{2}} - \dfrac{1}{3n(1 + \frac{1}{n})^{3}} - ....\right) = 1 - \dfrac{1}{2} = \dfrac{1}{2} .

Brian Charlesworth - 4 years ago

Log in to reply

Thank you it. Now I have got my mistake.

Akshay Yadav - 4 years ago
Akshay Sharma
Mar 30, 2016

Replacing n n by 1 x \frac{1}{x} and further simplifying the expression, we get

lim x 0 \large\lim_{x \rightarrow 0} [ 1 x l n ( x + 1 ) x 2 \frac{1}{x} -\frac{ln(x+1)}{x^2} ]

Now expanding,we get

1 x 1 x 2 [ x x 2 2 + x 3 3 . . . . . . . . . . . . . ] \frac{1}{x}- \frac{1}{x^2}[x-\frac {x^2}{2}+\frac{x^3}{3}-.............]

A n s . 1 2 Ans.\boxed {\frac{1}{2}}

The simpliest computation for limit lim n ln [ e n ( n n + 1 ) n 2 ] = lim u e ( ln ( u ) ) Apply the chain rule: if lim u b ( f ( u ) ) = L a n d lim u a ( g ( x ) ) = b a n d f ( x ) is continuous at x = b . T h e n : lim x a ( f ( g ( x ) ) ) = L = ln ( e ) = 1 2 \begin{aligned}\lim_{n\to \infty} \ln\left[e^n\left(\frac{n}{n+1}\right)^{n^2}\right] &=\lim_{u \to \sqrt{e}}(\ln(u)) \quad{\text{Apply the chain rule: if } \lim_{u \to b}(f(u)) =L \space\ce{and} \lim_{u \to a}(g(x))=b \space\ce{and} f(x) \space\text{is continuous at } x=b. Then: \lim_{x \to a}(f(g(x))) =L }\\&= \ln(\sqrt{e}) \\&= \frac{1}{2} \space\space\square \end{aligned}

FIN!!! \large\text{FIN!!!}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...