Limit and Geometry 002

Calculus Level 4

As shown in the diagram, rectangle A B C D \rm ABCD has side lengths A B = sin θ \overline{\rm AB}=\sin \theta and A D = 1 \overline{\rm AD}=1 . Point E \rm E inside rectangle A B C D \rm ABCD is such that A E = A B \overline{\rm AE}=\overline{\rm AB} and E A B = θ \angle \rm EAB=\theta .

If S ( θ ) S(\theta) is area of quadrilateral A B C E \rm ABCE , find lim θ 0 + S ( θ ) θ 3 \lim \limits_{\theta \to 0^+} \dfrac{S(\theta)}{\theta^3} .

5 4 \frac{5}{4} 1 2 \frac{1}{2} 1 1 1 4 \frac{1}{4} 3 4 \frac{3}{4}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chris Lewis
Sep 30, 2020

Set up coordinates with A A at the origin and B B on the x x- axis. Then the coordinates of the points are A ( 0 , 0 ) A(0,0) , B ( sin θ , 0 ) B(\sin\theta,0) , C ( sin θ , 1 ) C(\sin\theta,1) , D ( 0 , 1 ) D(0,1) and E ( cos θ sin θ , sin 2 θ ) E(\cos \theta \cdot \sin \theta,\sin^2 \theta) .

The area of A B C E ABCE is the sum of the areas of A B E ABE and B C E BCE ; that is S ( θ ) = 1 2 sin 3 θ + 1 2 ( sin θ cos θ sin θ ) S(\theta)=\frac12 \sin^3 \theta+\frac12(\sin \theta-\cos \theta \cdot \sin \theta)

Using the small angle approximations sin θ θ \sin \theta \approx \theta and cos θ 1 1 2 θ 2 \cos \theta \approx 1-\frac12 \theta^2 , this becomes S ( θ ) 1 2 θ 3 + 1 2 ( θ θ + 1 2 θ 3 ) = 3 4 θ 3 S(\theta) \approx \frac12 \theta^3+\frac12 \left(\theta-\theta+\frac12 \theta^3 \right)=\frac34 \theta^3

Hence the required limit is 3 4 \boxed{\frac34} .

Note that S ( θ ) = [ A B C E ] = [ A B C D ] [ A E C D ] S(\theta) = [ABCE] = [ABCD]-[AECD] . To find [ A E C D ] [AECD] , draw E F A D EF || AD . Then:

S ( θ ) = [ A B C D ] [ A E C D ] = [ A B C D ] [ A E F D ] [ C E F ] = A D × A B ( A D + E F ) × D F 2 C F × E F 2 = A D × A B A D × D F 2 C D × E F 2 = sin θ sin θ cos θ 2 sin θ ( 1 sin 2 θ ) 2 = sin θ ( 1 cos θ + sin 2 θ ) 2 = 2 sin θ sin 2 θ 4 + sin 3 θ 2 \begin{aligned} S(\theta) & = [ABCD] - [AECD] \\ & = [ABCD] - [AEFD] - [CEF] \\ & = \overline{AD} \times \overline{AB} - \frac {(\overline{AD}+\overline{EF})\times \overline{DF}}2 - \frac {\overline{CF}\times\overline{EF}}2 \\ & = \overline{AD} \times \overline{AB} - \frac {\overline{AD}\times \overline{DF}}2 - \frac {\overline{CD}\times\overline{EF}}2 \\ & = \sin \theta - \frac {\sin \theta \cos \theta}2 - \frac {\sin \theta(1-\sin^2 \theta)}2 \\ & = \frac {\sin \theta(1 - \cos \theta + \sin^2 \theta)}2 \\ & = \frac {2\sin \theta - \sin 2\theta}4 + \frac {\sin^3 \theta}2 \end{aligned}

Therefore,

lim θ 0 + S ( θ ) θ 3 = lim θ 0 + 2 sin θ sin 2 θ 4 θ 3 + lim θ 0 + 1 2 ( sin θ θ ) 3 A 0/0 case, L’H o ˆ pital’s rule applies. = lim θ 0 + 2 cos θ 2 cos 2 θ 12 θ 2 + 1 2 1 3 After differentiation, again 0/0 = lim θ 0 + 2 sin θ + 4 sin 2 θ 24 θ + 1 2 Again a 0/0 case = lim θ 0 + 2 cos θ + 8 cos 2 θ 24 + 1 2 Differentiate up and down w.r.t. θ = 6 24 + 1 2 = 3 4 \begin{aligned} \lim_{\theta \to 0^+} \frac {S(\theta)}{\theta^3} & = \blue{\lim_{\theta \to 0^+} \frac {2\sin \theta - \sin 2\theta}{4 \theta^3}} + \lim_{\theta \to 0^+} \frac 12 \left(\frac {\sin\theta} \theta \right)^3 & \small \blue{\text{A 0/0 case, L'Hôpital's rule applies.}} \\ & = \blue{\lim_{\theta \to 0^+} \frac {2\cos \theta - 2 \cos 2\theta}{12 \theta^2}} + \frac 12 \cdot 1^3 & \small \blue{\text{After differentiation, again 0/0}} \\ & = \blue{\lim_{\theta \to 0^+} \frac {-2\sin \theta + 4 \sin 2\theta}{24 \theta}} + \frac 12 & \small \blue{\text{Again a 0/0 case}} \\ & = \blue{\lim_{\theta \to 0^+} \frac {-2\cos \theta + 8 \cos 2\theta}{24}} + \frac 12 & \small \blue{\text{Differentiate up and down w.r.t. }\theta} \\ & = \blue{\frac 6{24}} + \frac 12 = \boxed{\frac 34} \end{aligned}

I calculated the limit more or less the same way(I applied L'Hospital's thrice), but I found the area differently: I let F F be the foot of the altitude from E E and split it into the area of two triangles( A B E \triangle ABE and B E C \triangle BEC ), which can be computed using trigonometry on A E F \triangle AEF and 1 2 b h \tfrac{1}{2}\cdot b \cdot h .

Vikram Sarkar - 8 months, 1 week ago
Karan Chatrath
Sep 30, 2020

Draw a line segment from E till it intersects AB at F, which is perpendicular to AB. Draw a line segment from E till it intersects BC at G, which is perpendicular to BC. Then, the shaded area is the following:

S = A r e a ( A E F ) + A r e a ( E G C ) + A r e a ( E F B G ) S = \mathrm{Area} (\triangle AEF) + \mathrm{Area} ( \triangle EGC) +\mathrm{Area} ( EFBG)

E F B G EFBG is a rectangle. Let sin θ = r \sin{\theta}=r . Then the expression comes out to be:

S = r 2 2 sin θ cos θ + 1 2 ( r r cos θ ) ( 1 r sin θ ) + ( r sin θ ) ( ( r r cos θ ) S = \frac{r^2}{2}\sin{\theta}\cos{\theta} + \frac{1}{2}(r - r\cos{\theta})(1-r\sin{\theta}) + (r\sin{\theta})((r - r\cos{\theta})

This expression can be simplified to obtain the following:

S = sin 3 θ cos θ + sin θ ( 1 cos θ ) ( 1 sin 2 θ ) + 2 sin 2 θ ( 1 cos θ ) 2 S = \frac{\sin^3{\theta}\cos{\theta} + \sin{\theta}(1 - \cos{\theta})(1-\sin^2{\theta}) + 2\sin^2{\theta}(1 - \cos{\theta})}{2}

S = sin 3 θ cos θ + sin θ ( 1 cos θ ) cos 2 θ + 2 sin 2 θ ( 1 cos θ ) 2 S = \frac{\sin^3{\theta}\cos{\theta} + \sin{\theta}(1 - \cos{\theta}) \cos^2{\theta} + 2\sin^2{\theta}(1 - \cos{\theta})}{2}

Therefore:

lim θ 0 + S θ 3 = lim θ 0 + sin 3 θ cos θ + sin θ ( 1 cos θ ) cos 2 θ + 2 sin 2 θ ( 1 cos θ ) 2 θ 3 \lim_{\theta \to 0^{+}} \frac{S}{\theta^3} =\lim_{\theta \to 0^{+}} \frac{\sin^3{\theta}\cos{\theta} + \sin{\theta}(1 - \cos{\theta}) \cos^2{\theta} + 2\sin^2{\theta}(1 - \cos{\theta})}{2\theta^3}

lim θ 0 + S θ 3 = ( lim θ 0 + sin 3 θ cos θ 2 θ 3 ) + ( lim θ 0 + sin θ ( 1 cos θ ) cos 2 θ 2 θ 3 ) + ( lim θ 0 + 2 sin 2 θ ( 1 cos θ ) 2 θ 3 ) \lim_{\theta \to 0^{+}} \frac{S}{\theta^3} = \left(\lim_{\theta \to 0^{+}}\frac{\sin^3{\theta}\cos{\theta}}{2\theta^3} \right)+\left(\lim_{\theta \to 0^{+}}\frac{\sin{\theta}(1-\cos{\theta})\cos^2{\theta}}{2\theta^3}\right) +\left( \lim_{\theta \to 0^{+}}\frac{2\sin^2{\theta}(1 - \cos{\theta})}{2\theta^3}\right)

lim θ 0 + S θ 3 = 1 2 + 1 4 + 0 \lim_{\theta \to 0^{+}} \frac{S}{\theta^3} = \frac{1}{2} + \frac{1}{4} + 0

lim θ 0 + S θ 3 = 3 4 \boxed{\lim_{\theta \to 0^{+}} \frac{S}{\theta^3} = \frac{3}{4}}

Each limit can be solved in more than one way. I have left out these evaluations.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...