t ( n ) = ∫ 0 4 π tan 2 n x d x
For t ( n ) as defined above, t ( 5 ) = b a − 4 π , where a and b are coprime positive integers. Find b − a .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let,
f ( x ) = ∫ 0 4 π tan x + 2 t + tan x t d t
f ( x ) = ∫ 0 4 π tan x t ( tan 2 t + 1 ) d t
f ( x ) = ∫ 0 4 π tan x t ( tan 2 t + 1 ) d t
Let v = t a n ( t )
d ( t a n ( t ) ) = d ( v )
( tan 2 t + 1 ) d ( t ) = d ( v )
f ( x ) = ∫ 0 1 v x d v
f ( x ) = x + 1 1
t ( 5 ) = ∫ 0 4 π tan 1 0 x d x
t ( 5 ) = ∫ 0 4 π tan 1 0 x + tan 8 x − tan 8 x − tan 6 x + tan 6 x + tan 4 x − tan 4 x − tan 2 x + tan 2 x + tan 0 x − 1 d x
t ( 5 ) = f ( 8 ) − f ( 6 ) + f ( 4 ) − f ( 2 ) + f ( 0 ) − ∫ 0 4 π d x
t ( 5 ) = f ( 8 ) − f ( 6 ) + f ( 4 ) − f ( 2 ) + f ( 0 ) − 4 π
t ( 5 ) = 9 1 − 7 1 + 5 1 − 3 1 + 1 1 − 4 π
t ( 5 ) = 3 1 5 2 6 3 − 4 π
b a = 3 1 5 2 6 3
b − a = 5 2
@Shauryam Akhoury , you should not use a in two places. I have changed one of them to n for you.
Log in to reply
Sorry about that,didn't notice about that at all
Problem Loading...
Note Loading...
Set Loading...
t ( n ) = ∫ 0 4 π tan 2 n x d x = ∫ 0 4 π tan 2 x tan 2 ( n − 1 ) x d x = ∫ 0 4 π ( sec 2 x − 1 ) tan 2 ( n − 1 ) x d x = ∫ 0 4 π sec 2 x tan 2 ( n − 1 ) x d x − t ( n − 1 ) = ∫ 0 1 u 2 ( n − 1 ) d u − t ( n − 1 ) = 2 n − 1 1 − t ( n − 1 ) Let u = tan x ⟹ d u = sec 2 x d x
Now we have:
t ( 1 ) ⟹ t ( n ) t ( 5 ) = 2 ( 1 ) − 1 1 − ∫ 0 4 π d x = 1 − 4 π = k = 1 ∑ n 2 n − 1 ( − 1 ) n + k + ( − 1 ) n 4 π = 9 1 − 7 1 + 5 1 − 3 1 + 1 − 4 π = 3 1 5 2 6 3 − 4 π
Therefore, b − a = 3 1 5 − 2 6 3 = 5 2 .