Limit and Integral on tan

Calculus Level 3

t ( n ) = 0 π 4 tan 2 n x d x t(n)=\int _{ 0 }^{ \frac { \pi }{ 4 } }{ \tan { ^{ 2n } } x }\ dx

For t ( n ) t(n) as defined above, t ( 5 ) = a b π 4 t(5) = \dfrac ab -\dfrac { \pi }{ 4 } , where a a and b b are coprime positive integers. Find b a b-a .


The answer is 52.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 14, 2018

t ( n ) = 0 π 4 tan 2 n x d x = 0 π 4 tan 2 x tan 2 ( n 1 ) x d x = 0 π 4 ( sec 2 x 1 ) tan 2 ( n 1 ) x d x = 0 π 4 sec 2 x tan 2 ( n 1 ) x d x t ( n 1 ) Let u = tan x d u = sec 2 x d x = 0 1 u 2 ( n 1 ) d u t ( n 1 ) = 1 2 n 1 t ( n 1 ) \begin{aligned} t(n) & = \int_0^\frac \pi 4 \tan^{2n} x \ dx \\ & = \int_0^\frac \pi 4 \tan^2 x \tan^{2(n-1)} x \ dx \\ & = \int_0^\frac \pi 4 (\sec^2 x -1 )\tan^{2(n-1)} x \ dx \\ & = {\color{#3D99F6} \int_0^\frac \pi 4 \sec^2 x \tan^{2(n-1)} x \ dx} - t(n-1) & \small \color{#3D99F6} \text{Let }u = \tan x \implies du = \sec^2 x \ dx \\ & = {\color{#3D99F6} \int_0^1 u^{2(n-1)}\ du} - t(n-1) \\ & = \frac 1{2n-1} - t(n-1) \end{aligned}

Now we have:

t ( 1 ) = 1 2 ( 1 ) 1 0 π 4 d x = 1 π 4 t ( n ) = k = 1 n ( 1 ) n + k 2 n 1 + ( 1 ) n π 4 t ( 5 ) = 1 9 1 7 + 1 5 1 3 + 1 π 4 = 263 315 π 4 \begin{aligned} t(1) & = \frac 1{2(1)-1} - \int_0^\frac \pi 4 dx = 1 - \frac \pi 4 \\ \implies t(n) & = \sum_{k=1}^n \frac {(-1)^{n+k}}{2n-1} + (-1)^n\frac \pi 4 \\ t(5) & = \frac 19 - \frac 17 + \frac 15 - \frac 13 + 1 - \frac \pi 4 = \frac {263}{315} - \frac \pi 4 \end{aligned}

Therefore, b a = 315 263 = 52 b-a = 315-263 = \boxed{52} .

Shauryam Akhoury
Nov 14, 2018

Let,

f ( x ) = 0 π 4 tan x + 2 t + tan x t d t f(x)=\int _{ 0 }^{ \frac { \pi }{ 4 } }{ \tan ^{ x+2 }{ t } +\tan ^{ x }{ t } dt }

f ( x ) = 0 π 4 tan x t ( tan 2 t + 1 ) d t f(x)=\int _{ 0 }^{ \frac { \pi }{ 4 } }{ \tan ^{ x }{ t } (\tan ^{ 2 }{ t } +1)dt }

f ( x ) = 0 π 4 tan x t ( tan 2 t + 1 ) d t f(x)=\int _{ 0 }^{ \frac { \pi }{ 4 } }{ \tan ^{ x }{ t } (\tan ^{ 2 }{ t } +1)dt }

Let v = t a n ( t ) v=tan(t)

d ( t a n ( t ) ) = d ( v ) d(tan(t))=d(v)

( tan 2 t + 1 ) d ( t ) = d ( v ) (\tan ^{ 2 }{ t } +1)d(t)=d(v)

f ( x ) = 0 1 v x d v f(x)=\int _{ 0 }^{ 1 }{ { v }^{ x }dv }

f ( x ) = 1 x + 1 f(x)=\frac { 1 }{ x+1 }

t ( 5 ) = 0 π 4 tan 10 x d x t(5)=\int _{ 0 }^{ \frac { \pi }{ 4 } }{ \tan ^{ 10 }{ x } dx }

t ( 5 ) = 0 π 4 tan 10 x + tan 8 x tan 8 x tan 6 x + tan 6 x + tan 4 x tan 4 x tan 2 x + tan 2 x + tan 0 x 1 d x t(5)=\int _{ 0 }^{ \frac { \pi }{ 4 } }{ \tan ^{ 10 }{ x } +\tan ^{ 8 }{ x } -\tan ^{ 8 }{ x } -\tan ^{ 6 }{ x } +\tan ^{ 6 }{ x } +\tan ^{ 4 }{ x } -\tan ^{ 4 }{ x } -\tan ^{ 2 }{ x } +\tan ^{ 2 }{ x+\tan ^{ 0 }{ x } } -1\quad dx }

t ( 5 ) = f ( 8 ) f ( 6 ) + f ( 4 ) f ( 2 ) + f ( 0 ) 0 π 4 d x t(5)=f(8)-f(6)+f(4)-f(2)+f(0)-\int _{ 0 }^{ \frac { \pi }{ 4 } }{ dx }

t ( 5 ) = f ( 8 ) f ( 6 ) + f ( 4 ) f ( 2 ) + f ( 0 ) π 4 t(5)=f(8)-f(6)+f(4)-f(2)+f(0)-\frac { \pi }{ 4 }

t ( 5 ) = 1 9 1 7 + 1 5 1 3 + 1 1 π 4 t(5)=\frac { 1 }{ 9 } -\frac { 1 }{ 7 } +\frac { 1 }{ 5 } -\frac { 1 }{ 3 } +\frac { 1 }{ 1 } -\frac { \pi }{ 4 }

t ( 5 ) = 263 315 π 4 t(5)=\frac { 263 }{ 315 } -\frac { \pi }{ 4 }

a b = 263 315 \frac { a }{ b } =\frac { 263 }{ 315 }

b a = 52 b-a=52

@Shauryam Akhoury , you should not use a a in two places. I have changed one of them to n n for you.

Chew-Seong Cheong - 2 years, 6 months ago

Log in to reply

Sorry about that,didn't notice about that at all

Shauryam Akhoury - 2 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...