Limit and trigonometry

Calculus Level 3

E = 2016 sin x , M = 2016 cos x , T = 2016 tan x \large E =\frac{2016}{\sin{x}}, \qquad M =\frac{2016}{\cos{x}}, \qquad T =\frac{2016}{\tan{x}}

lim x 0 + E M T = ? \large \lim_{x\rightarrow0^{+}} EMT = \, ?

-\infty 0 1 \infty Undefined

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tommy Li
Aug 1, 2016

E = 2016 sin x , M = 2016 cos x , T = 2016 tan x \large E =\frac{2016}{\sin{x}} , M =\frac{2016}{\cos{x}} , T =\frac{2016}{\tan{x}}

lim x 0 + E M T = lim x 0 + 201 6 3 sin x cos x tan x \large \lim_{x\rightarrow0^{+}} EMT = \lim_{x\rightarrow0^{+}}\dfrac{2016^3}{\sin{x}\cos{x}\tan{x}}

lim x 0 + E M T 201 6 3 ( 0 + ) ( 1 ) ( 0 + ) \large \lim_{x\rightarrow0^{+}} EMT \rightarrow \dfrac{2016^3}{(0^{+})(1)(0^{+})}

lim x 0 + E M T 201 6 3 0 + \large \lim_{x\rightarrow0^{+}} EMT \rightarrow \dfrac{2016^3}{0^{+}}

lim x 0 + E M T \large \lim_{x\rightarrow0^{+}} EMT \rightarrow \infty


lim x 0 + E M T = lim x 0 + 201 6 3 sin x cos x tan x \large \lim_{x\rightarrow0^{+}} EMT = \lim_{x\rightarrow0^{+}}\dfrac{2016^3}{\sin{x}\cos{x}\tan{x}}

lim x 0 + E M T = lim x 0 + 201 6 3 sin x cos x sin x cos x \large \lim_{x\rightarrow0^{+}} EMT = \lim_{x\rightarrow0^{+}}\dfrac{2016^3}{\sin{x}\cos{x}\frac{\sin{x}}{\cos{x}}}

lim x 0 + E M T = lim x 0 + 201 6 3 sin 2 x \large \lim_{x\rightarrow0^{+}} EMT = \lim_{x\rightarrow0^{+}}\dfrac{2016^3}{\sin^2{x}}

lim x 0 + E M T 201 6 3 ( 0 + ) 2 \large \lim_{x\rightarrow0^{+}} EMT \rightarrow \dfrac{2016^3}{(0^{+})^2}

lim x 0 + E M T 201 6 3 0 + \large \lim_{x\rightarrow0^{+}} EMT \rightarrow \dfrac{2016^3}{0^{+}}

lim x 0 + E M T \large \lim_{x\rightarrow0^{+}} EMT \rightarrow \infty

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...