Limit chain

Calculus Level 2

lim x lim x lim . . . 3 x 2 x 3 x 2 x 3 x 2 x = ? \large \lim _{ x\rightarrow \lim _{ x\rightarrow \lim _{ ... }{ \frac { { 3x }^{ 2 } }{ x } } }{ \frac { { 3x }^{ 2 } }{ x } } }{ \frac { { 3x }^{ 2 } }{ x } }=?

1 \infty log 6 2 \log _{ \sqrt { 6 } }{ 2 } 2 \sqrt { 2 } 6 \sqrt { 6 } 6 2 ln 6 \frac { \sqrt { 6 } }{ \sqrt { 2 } } \ln { 6 } 256 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Louis Ullman
Feb 26, 2018

Starting with lim x lim x lim . . . 3 x 2 x 3 x 2 x 3 x 2 x = y \lim _{ x\rightarrow \lim _{ x\rightarrow \lim _{ ... }{ \frac { { 3x }^{ 2 } }{ x } } }{ \frac { { 3x }^{ 2 } }{ x } } }{ \frac { { 3x }^{ 2 } }{ x } }=y , we can solve for y y using algebra:

lim x y 3 x 2 x = y \lim _{ x\rightarrow y }{ \frac { { 3x }^{ 2 } }{ x } } =y lim x y 3 x = y \lim _{ x\rightarrow y }{ 3x } =y lim x 0 3 x = 0 \lim _{ x\rightarrow 0 }{ 3x } =0

Therefore, since y = 0 y=0 , the answer is 0 \boxed { 0 } .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...