Limit Driller #1

Calculus Level 3

lim n [ tan ( π 2 n ) tan ( 2 π 2 n ) tan ( 3 π 2 n ) tan ( n π 2 n ) ] 1 n = ? \lim_{n\to\infty}\left[ \tan \left( \frac\pi {2n} \right)\tan \left( \frac{2\pi} {2n} \right)\tan \left( \frac{3\pi} {2n} \right)\ldots \tan \left( \frac{n\pi} {2n} \right) \right ]^{\frac1n} = \ ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

L = lim n [ r = 1 n tan ( r π 2 n ) ] 1 n L = \displaystyle \lim_{n \to \infty} \left[ \prod_{r=1}^{n}\tan \left(\dfrac{r\pi}{2n} \right) \right]^{\frac{1}{n}}

ln L = lim n 1 n [ r = 1 n ln ( tan ( r π 2 n ) ) ] \ln L = \displaystyle \lim_{n \to \infty} \dfrac{1}{n} \left[\sum_{r=1}^{n} \ln \left(\tan\left(\dfrac{r\pi}{2n} \right)\right)\right]

This is a Riemann Integral.

ln L = 0 1 ln ( tan ( π x 2 ) ) d x = 0 \ln L = \displaystyle \int_{0}^{1} \ln(\tan\left(\dfrac{\pi x}{2}\right))dx = 0

L = e 0 = 1 \Rightarrow L = e^0 = \boxed{1}


Note

  • 0 π 2 ln ( tan x ) d x = 0 π 2 ln ( cot x ) d x = 0 \displaystyle \int_{0}^{\frac{\pi}{2}} \ln (\tan x) dx = \int_{0}^{\frac{\pi}{2}} \ln (\cot x) dx = 0
Aman Rajput
Jun 28, 2015

Limit = e 0 1 log ( t a n ( π x / 2 ) ) d x \displaystyle e^{\int\limits_0^1 \log(tan(\pi x/2)) dx}

= e 0 e^0

= 0 \boxed 0

Moderator note:

Can you elaborate on it?

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...