Limit featuring 2018

Calculus Level 2

Find the value of the limit below up to 3 decimal places.

lim x ( ln x ) 2018 x \large \lim_{x \to \infty} \frac { ( \ln x )^{2018}}{x}

If you think that the answer is \infty type in 1 -1 and if you think that the answer is -\infty type in 10 -10 .


The answer is 0.0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Michael Mendrin
May 7, 2018

We can rewrite expression as follows

( 1 x 1 2018 L o g ( x ) ) 2018 ( \dfrac{1}{x^{\frac{1}{2018} } } Log(x) )^{2018}

( L o g ( ( ( x 1 2018 ) ( 1 x 1 2018 ) ) 2018 ) ) 2018 ( Log({ ( (x^{ \frac{1}{2018} }) } ^{ \left( \dfrac{1}{x^{\frac{1}{2018} } } \right ) } )^{2018} ) )^{2018}

Let x 1 2018 x^{\frac{1}{2018} } \rightarrow \infty

( ( L o g ( 1 ) ) 2018 ) ) 2018 ( ( Log( 1 ))^{2018} ) )^{2018}

( 0 ) 2018 (0 )^{2018}

0 0

Let L n = lim x ( ln x ) n x L_{n}=\lim_{x \to \infty} \frac {(\ln x)^{n}}{x } where n n is a nonnegative integer.

Using L'Hopital 's rule we get that L n = lim x ( ln x ) n x = lim x n ( ln x ) n 1 × 1 x 1 = lim x n ( ln x ) n 1 x = n × L n 1 L_{n}=\lim_{x \to \infty} \frac {(\ln x)^{n}}{x }=\lim_{x \to \infty} \frac {n(\ln x)^{n-1} \times \frac {1}{x}}{1}= \lim_{x \to \infty} n\frac {(\ln x)^{n-1}}{x} = n \times L_{n-1} . So:

L n = n × L n 1 L_{n}=n \times L_{n-1}

Therefore L n = n ! × L 0 L_{n} = n! \times L_{0} . But L 0 = 0 L_{0} = 0 so L n = 0 L_{n}=0 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...