Limit. Floor. Sum.

Calculus Level 4

Find 1000 I \lfloor 1000I \rfloor .


The answer is 333.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

U Z
Feb 12, 2015

x = x { x } \lfloor x \rfloor = x - \{x\}

I = lim x 0 + ( lim n r = 1 n r 2 × x x n 3 r = 1 n { r 2 × x x } n 3 ) I = \displaystyle \lim_{x \to 0^{+}} \left( \lim_{n \to \infty} \dfrac{ \sum_{r = 1}^n r^2 \times x^x}{n^3} - \dfrac{ \sum_{r = 1}^n \{ r^2 \times x^x\}}{n^3}\right)

lim n r = 1 n r 2 × x x n 3 = n ( n + 1 ) ( 2 n + 1 ) 6 n 3 = lim n ( 1 + 1 n ) ( 2 + 1 n ) 6 = 1 3 \displaystyle \lim_{n \to \infty} \dfrac{ \sum_{r = 1}^n r^2 \times x^x}{n^3} = \dfrac{ n(n+1)(2n + 1)}{6n^3} = \lim_{n \to \infty} \dfrac{ ( 1 + \dfrac{1}{n})(2 + \dfrac{1}{n})}{6} = \dfrac{1}{3}

N o w , 0 { r 2 × x x } < 1 Now~, 0 \leq \{ r^2 \times x^x\} < 1

lim n r = 1 n { r 2 × x x } n 3 = 0 \displaystyle \lim_{n \to \infty} \dfrac{ \sum_{r = 1}^n \{ r^2 \times x^x\}}{n^3} = 0

Thus , I = lim x 0 + x x 3 I = \lim_{x \to 0^{+}} \dfrac{x^x}{3}

lim x 0 + x x = e x l o g x = e lim x 0 + l o g x x = lim x 0 + 1 e x = 1 \lim_{x \to 0^{+}} x^x = e^{xlogx} = e^{ \lim_{x \to 0^{+}} \dfrac{logx}{x}} = \lim_{x \to 0^{+}} \dfrac{1}{e^x} = 1 ( as it forms \dfrac{\infty}{\infty} so we can apply L.H )

1000 3 = 333.333 = 333 \lfloor \dfrac{1000}{3} \rfloor = \lfloor 333.333 \rfloor = 333

Atharva Sarage
Feb 20, 2016

use sandwich theorem

Incredible Mind
Feb 14, 2015

i use sandwich theorem

Aakarshit Uppal
Feb 13, 2015

lim x 0 + x x = e ( l i m x o + log x 1 / x ) = 1 \lim_{x\to0^+} x^x = e^ {\Big( lim_{x\to o^+} \dfrac{\log x}{1/x} \Big)} = 1

(As l i m x o + log x 1 x = 0 lim_{x\to o^+} \frac{\log x}{\frac{1}{x}} = 0 , by applying L'Hôpital's rule )

I = lim n r = 1 n r 2 n 3 \Rightarrow I = \lim_{n\to \infty} \frac{\sum_{r=1}^n \lfloor{r^2}\rfloor}{n^3}

I = lim n r = 0 n ( r n ) 2 1 n \Rightarrow I = \lim_{n \to \infty} \sum_{r=0}^n \Big(\frac{r}{n} \Big)^2 \frac{1}{n}

I = 0 1 t 2 d t \Rightarrow I = \int_0^1 t^2 dt

(Integral as limit of Riemann Sum)

I = t 3 3 0 1 = 1 / 3 \Rightarrow I = \frac{t^3}{3} \Big| _0^1 = 1/3

1000 I = 333 \Rightarrow \lfloor{1000I}\rfloor = \color{#20A900}{\boxed{333}}

Hi, you can use \infty instead of inf to represent infinity :)

A Former Brilliant Member - 6 years, 3 months ago

Log in to reply

Oops! My bad... ;). I put '\inf' instead of '\infty'. Thanks for pointing it out. I'll go ahead and edit that.

Aakarshit Uppal - 6 years, 3 months ago

You cannot just interchange limits without justification.

Jake Lai - 6 years, 3 months ago

Log in to reply

Yes, i had some doubts about that too. Could you (or anyone) help me justify it? Or is it just incorrect?

Aakarshit Uppal - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...