Limit for you

Calculus Level 3

lim n k = 1 n 4 n 2 k n k 2 n 2 \lim_{n \to \infty} \sum_{k=1}^n \frac{4}{n}\sqrt{\frac{2k}{n}-\frac{k^{2}}{n^{2}}}


The answer is 3.14159.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 28, 2018

Relevant wiki: Riemann Sums

S = lim n k = 1 n 4 n 2 k n k 2 n 2 By Riemann sum lim n 1 n k = a b f ( k n ) = lim n a n b n f ( x ) d x = 4 0 1 2 x x 2 d x Using identity a b f ( x ) d x = a b f ( a + b x ) d x = 4 0 1 1 x 2 d x Let x = sin θ d x = cos θ d θ = 4 0 π 2 cos 2 θ d θ Note that cos 2 θ = 2 cos 2 θ 1 = 4 0 π 2 1 + cos ( 2 θ ) 2 d θ = 2 [ θ + sin ( 2 θ ) 2 ] 0 π 2 = π 3.142 \begin{aligned} S & = \lim_{n \to \infty} \sum_{k=1}^n \frac 4n \sqrt{\frac {2k}n-\frac {k^2}{n^2}} & \small \color{#3D99F6} \text{By Riemann sum }\lim_{n \to \infty} \frac 1n \sum_{k=a}^b f \left(\frac kn \right) = \lim_{n \to \infty} \int_\frac an^\frac bn f(x) \ dx \\ & = 4\int_0^1 \sqrt {2x-x^2} dx & \small \color{#3D99F6} \text{Using identity }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = 4\int_0^1 \sqrt {\color{#3D99F6}1-x^2} dx & \small \color{#3D99F6} \text{Let }x = \sin \theta \implies dx = \cos \theta \ d\theta \\ & = 4 \int_0^\frac \pi 2 \cos^2 \theta \ d\theta & \small \color{#3D99F6} \text{Note that }\cos 2\theta = 2\cos^2 \theta - 1 \\ & = 4 \int_0^\frac \pi 2 \frac {1+\cos (2\theta)}2 \ d\theta \\ & = 2 \left[\theta + \frac {\sin (2\theta)}2 \right]_0^\frac \pi 2 \\ & = \pi \approx \boxed{3.142} \end{aligned}

Djoko Maric
Oct 28, 2018

This is maybe not a rigorous solution, but this is how i came up with this question. Let's look at the circle with radius 1, and centered at (0,0). It's equation is: x 2 + y 2 = 1 \ x^{2}+y^{2}=1 Its area is A = π \ A=\pi Now let's find its area in another way. We can compute the area with integral: A = 4 0 1 1 x 2 d x = 4 π 4 = π \ A= 4 \int_0^1 \sqrt{1-x^{2}} dx=4 \frac{\pi}{4} = \pi Now, the sigma notation and limit in the question remind of the defintion of the definite integral: a b f ( x ) d x = lim n k = 1 n ( ( b a ) n f ( a + k b n ) ) \ \int_a^b f(x) dx = \lim_{n \to \infty} \sum_{k=1}^n (\frac{(b-a)}{n} f(a+\frac{kb}{n})) And we can factor out the constant: a b f ( x ) d x = lim n ( b a ) n k = 1 n f ( a + k b n ) \ \int_a^b f(x) dx = \lim_{n \to \infty} \frac{(b-a)}{n} \sum_{k=1}^n f(a+\frac{kb}{n}) In our case: a = 0 \ a=0 b = 1 \ b=1 And: f ( x ) = 1 k 2 n 2 \ f(x)=\sqrt{1-\frac{k^{2}}{n^{2}}} Now if we substitute k 0 = n k \ k_0=n-k ,(we are counting from right (1) to left (0)), we get: a b f ( x ) d x = lim n ( 1 ) n k 0 = 1 n 1 n 2 2 k 0 n + k 0 2 n 2 \ \int_a^b f(x) dx = \lim_{n \to \infty} \frac{(1)}{n} \sum_{k_0=1}^n \sqrt{1-\frac{n^{2}-2k_0n+k_0^{2}}{n^{2}}} π 4 = a b f ( x ) d x = lim n 1 n k 0 = 1 n 2 k 0 n k 0 2 n 2 \ \frac{\pi}{4} = \int_a^b f(x) dx = \lim_{n \to \infty} \frac{1}{n} \sum_{k_0=1}^n \sqrt{\frac{2k_0}{n}-\frac{k_0^{2}}{n^{2}}} This is equivalent with: lim n k = 1 n 4 n 2 k n k 2 n 2 = π \ \lim_{n \to \infty} \sum_{k=1}^n \frac{4}{n} \sqrt{\frac{2k}{n}-\frac{k^{2}}{n^{2}}} =\boxed{\pi}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...