Limit Identities

Calculus Level 3

lim x 0 [ 2 cos 2 ( 1 2 x 4 ) 1 18 x 18 sin 2 ( 1 2 x 4 ) + 36 x ] = ? \large \lim_{x\to0} \left [ \frac{2\cos^2 \left( \frac 12 x^4 \right)}{\frac1{18}x} - \frac{18\sin^2\left( \frac 12 x^4 \right) + 36}{x}\right ] = \, ?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 10, 2016

Relevant wiki: L'Hopital's Rule - Basic

L = lim x 0 [ 2 cos 2 ( 1 2 x 4 ) 1 18 x 18 sin 2 ( 1 2 x 4 ) + 36 x ] = lim x 0 36 cos 2 ( 1 2 x 4 ) 18 sin 2 ( 1 2 x 4 ) 36 x = lim x 0 18 ( 2 cos 2 ( 1 2 x 4 ) 1 ) + 9 ( 1 2 sin 2 ( 1 2 x 4 ) ) 27 x = lim x 0 18 cos ( x 4 ) + 9 cos ( x 4 ) 27 x = lim x 0 27 cos ( x 4 ) 27 x This is a 0/0 case, L’H o ˆ pital’s rule applies. = lim x 0 27 sin ( x 4 ) ( 4 x 3 ) 1 Differentiate up and down w.r.t. x . = 0 \begin{aligned} L & = \lim_{x\to0} \left [ \frac{2\cos^2 \left( \frac 12 x^4 \right)}{\frac1{18}x} - \frac{18\sin^2\left( \frac 12 x^4 \right) + 36}{x}\right ] \\ & = \lim_{x \to 0} \frac {36\cos^2 \left( \frac 12 x^4 \right) - 18 \sin^2 \left( \frac 12 x^4 \right) - 36}x \\ & = \lim_{x \to 0} \frac {18(2\cos^2 \left( \frac 12 x^4 \right) -1) + 9(1 - 2 \sin^2 \left( \frac 12 x^4 \right)) - 27}x \\ & = \lim_{x \to 0} \frac {18\cos (x^4) + 9\cos (x^4) - 27}x \\ & = \lim_{x \to 0} \frac {27\cos (x^4) - 27}x \quad \quad \small \color{#3D99F6}{\text{This is a 0/0 case, L'Hôpital's rule applies.}} \\ & = \lim_{x \to 0} \frac {-27\sin (x^4)(4x^3)}1 \quad \quad \small \color{#3D99F6}{\text{Differentiate up and down w.r.t. }x.} \\ & = \boxed{0} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...