Limit + Integration --> Limtegration!! πŸ˜†

Calculus Level 3

lim ⁑ t β†’ ∞ ∫ 0 t ( tan ⁑ βˆ’ 1 x ) 2 dx t 2 + 1 = ? \large \displaystyle\lim_{t\rightarrow \infty} \frac{\displaystyle\int_{0}^{t} (\tan^{-1}x)^2 \text{dx} }{\sqrt{t^2+1}} = ?


Ο€ 2 4 \frac{\pi^2}{4} Ο€ 2 2 \frac{\pi^2}{2} Ο€ 4 \frac{\pi}{4} Ο€ 2 \frac{\pi}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Joel Yip
Sep 8, 2015

Using L'Hopital's Rule

lim ⁑ t β†’ ∞ ∫ 0 t tan ⁑ βˆ’ 1 x 2 d x 1 + t 2 = lim ⁑ t β†’ ∞ ( tan ⁑ βˆ’ 1 t ) 2 t 1 + t 2 \lim _{ t\rightarrow \infty }{ \frac { \int _{ 0 }^{ t }{ { \tan ^{ -1 }{ x } }^{ 2 } } dx }{ \sqrt { 1+{ t }^{ 2 } } } } =\lim _{ t\rightarrow \infty }{ \frac { { \left( \tan ^{ -1 }{ t } \right) }^{ 2 } }{ \frac { t }{ \sqrt { 1+{ t }^{ 2 } } } } }

Then,

lim ⁑ t β†’ ∞ ( tan ⁑ βˆ’ 1 t ) 2 t 1 + t 2 = Ο€ 2 4 \lim _{ t\rightarrow \infty }{ \frac { { \left( \tan ^{ -1 }{ t } \right) }^{ 2 } }{ \frac { t }{ \sqrt { 1+{ t }^{ 2 } } } } } =\frac { { \pi }^{ 2 } }{ 4 }

Nicely done :) dt is missing do edit :)

RAJ RAJPUT - 5Β years, 9Β months ago

But how did u consider that numerator is infinity

Vaibhav Vinayaka - 2Β years, 8Β months ago

Shouldn't u use Leibniz's method for the numerator

Himanshu Borkar - 1Β year, 2Β months ago

0 pending reports

Γ—

Problem Loading...

Note Loading...

Set Loading...