Limit It!

Calculus Level 5

Let x 1 , x 2 , and x 3 x_1,x_2, \mbox{ and } x_3 be roots of the equation ( x 1 ) ( x 8 ) ( x 31 ) = 1 (x-1)(x-8)(x-31)=1

If lim m lim n i = 1 3 cos m ( π n ! x i ) = k + 7 \lim\limits_{m\rightarrow\infty}\lim\limits_{n\rightarrow\infty}\sum\limits_{i=1}^{3}\cos^m\left(\pi n! x_i\right)=k+7

for integers m m and n n , find the value of k k .


The answer is -7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ayush Verma
Jul 1, 2015

l i m n n ! x i = { e v e n i f x i i s r a t i o n a l ( w h y ? ) i r r a t i o n a l i f x i i s i r r a t i o n a l & l i m m cos m ( π n ! x i ) = { 1 i f n ! x i i s e v e n 0 i f n ! x i i s i r r a t i o n a l l i m m l i m n cos m ( π n ! x i ) = { 1 i f x i i s r a t i o n a l 0 i f x i i s i r r a t i o n a l N o w , ( x 1 ) ( x 8 ) ( x 31 ) = 1 o r , x 3 40 x 2 + 287 x 249 = 0 B y R a t i o n a l r o o t t h e o r e m e v e r y r a t i n a l s o l n x = p q w i l l s a t i s f y 1. p i s i n t e g e r f a c t o r o f 249 = 1 × 3 × 83 ( c o n s t . t e r m ) & 2. q i s i n t e g e r f a c t o r o f 1 ( c o e f f . o f x 3 ) s o p o s s i b l e v a l u e s o f p = ± 1 , ± 3 , ± 83 , ± 249 & p o s s i b l e v a l u e s o f q = ± 1 b u t n o n e o f p q ( ± 1 , ± 3 , ± 83 , ± 249 ) s a t i s f y t h e e q n i t m e a n s r o o t a r e i r r a t i o n a l s o a l l l i m i t s w i l l b e 0 0 + 0 + 0 = k + 7 o r k = 7 \because \underset { n\rightarrow \infty }{ lim } n!{ x }_{ i }=\begin{cases} even\quad if\quad { x }_{ i }\quad is\quad rational\left( why? \right) \\ irrational\quad if\quad { x }_{ i }\quad is\quad irrational \end{cases}\\ \\ \& \quad \underset { m\rightarrow \infty }{ lim } \cos ^{ m }{ \left( \pi n!{ x }_{ i } \right) } =\begin{cases} 1\quad if\quad n!{ x }_{ i }\quad is\quad even\quad \\ 0\quad if\quad n!{ x }_{ i }\quad is\quad irrational \end{cases}\\ \\ \therefore \underset { m\rightarrow \infty }{ lim } \underset { n\rightarrow \infty }{ lim } \cos ^{ m }{ \left( \pi n!{ x }_{ i } \right) } =\begin{cases} 1\quad if\quad { x }_{ i }\quad is\quad rational\quad \\ 0\quad if\quad { x }_{ i }\quad is\quad irrational \end{cases}\\ \\ Now,\left( x-1 \right) \left( x-8 \right) \left( x-31 \right) =1\\ \\ or,{ \quad x }^{ 3 }-40{ x }^{ 2 }+287x-249=0\\ \\ By\quad Rational\quad root\quad theorem\quad every\quad ratinal\quad { sol }^{ n }\quad x=\cfrac { p }{ q } \quad \\ \\ will\quad satisfy\quad \\ \\ 1.p\quad is\quad integer\quad factor\quad of\quad -249=1\times 3\times 83\quad (const.\quad term)\\ \\ \& \quad 2.q\quad is\quad integer\quad factor\quad of\quad 1\quad (coeff.\quad of\quad { x }^{ 3 })\\ \\ so\quad possible\quad values\quad of\quad p=\pm 1,\pm 3,\pm 83,\pm 249\\ \\ \& \quad possible\quad values\quad of\quad q=\pm 1\quad \\ \\ but\quad none\quad of\quad \cfrac { p }{ q } \quad \left( \pm 1,\pm 3,\pm 83,\pm 249 \right) \quad satisfy\quad the\quad { eq }^{ n }\\ \\ it\quad means\quad root\quad are\quad irrational\quad so\quad all\quad limits\quad will\quad be\quad 0\\ \\ \Rightarrow 0+0+0=k+7\quad or\quad k=-7

How can all roots be irrational only two can be

Harish Yadav - 5 years, 11 months ago

Log in to reply

I'm sure that all roots of 16 x 3 1 = 0 16x^3-1=0 are irrational.

Kenny Lau - 5 years, 8 months ago

Why?Use Rational root theorem .

Ayush Verma - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...