Limit :- n ! n! , n n n^n and 1 n \frac {1}{n}

Calculus Level 3

lim n ( n ! n n ) 1 n = ? \large\displaystyle \lim_{n\to\infty}\left(\frac{n!}{n^n}\right)^{\frac{1}{n}} = \,?


Notation: ! ! is the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .

e e 3 \sqrt3 1 e \frac{1}{e} 1 e \frac{1}{\sqrt e}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jun 11, 2017

L = lim n ( n ! n n ) 1 n = lim n ( k = 1 n k n ) 1 n = lim n exp ( ln ( k = 1 n k n ) 1 n ) = exp ( lim n ln ( k = 1 n k n ) 1 n ) = exp ( lim n 1 n k = 1 n ln k n ) By Riemann sums = exp ( 0 1 ln x d x ) = exp ( x ln x x ) 0 1 = 1 e \begin{aligned} L &= \lim_{n \to \infty} \left(\frac {n!}{n^n}\right)^\frac 1n \\ &= \lim_{n \to \infty} \left(\prod_{k=1}^n \frac kn \right)^\frac 1n \\ &= \lim_{n \to \infty} \exp \left(\ln \left(\prod_{k=1}^n \frac kn \right)^\frac 1n \right) \\ &= \exp \left( \lim_{n \to \infty} \ln \left(\prod_{k=1}^n \frac kn \right)^\frac 1n \right) \\ &= \exp \left( \lim_{n \to \infty} \frac 1n \sum_{k=1}^n \ln \frac kn \right) & \small \color{#3D99F6} \text{By Riemann sums } \\ &= \exp \left( \int_0^1 \ln x \ dx \right) \\ &= \exp \left( x \ln x -x \right) \bigg|_0^1 \\ &= \boxed{\dfrac 1e} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...