Limit of a bell-shaped summand

Calculus Level 4

lim n k Z e k 2 n n = ? \large \lim_{n \to \infty} \frac {\displaystyle \sum_{k \in \mathbb{Z}} e^{\frac{-k^2}n}}{\sqrt n} =\ ?

e e π \sqrt{\pi} e \sqrt{e} π \pi

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 10, 2018

Relevant wiki: Riemann Sums

L = lim n 1 n k Z e k 2 n Since e k 2 n is an even function = lim n 1 n ( 1 + 2 k = 1 n e k 2 n ) Note that lim n 1 n = 0 = lim n 2 n k = 1 n e ( k n ) 2 Using Riemann sums: = 2 0 e x 2 d x lim n k = a b f ( k n ) = lim n a n b n f ( x ) d x = π erf ( ) Error function erf ( z ) = 2 π 0 z e t 2 d t = π Since erf ( ) = 1 \begin{aligned} L & = \lim_{n \to \infty} \frac 1{\sqrt n}\sum_{k \in \mathbb Z} \color{#3D99F6} e^{-\frac {k^2}n} & \small \color{#3D99F6} \text{Since }e^{-\frac {k^2}n} \text{ is an even function} \\ & = \lim_{n \to \infty} \frac 1{\sqrt n} \left(1 + 2\sum_{k=1}^n e^{-\frac {k^2}n} \right) & \small \color{#3D99F6} \text{Note that }\lim_{n \to \infty} \frac 1{\sqrt n} = 0 \\ & = \lim_{n \to \infty} \frac 2{\sqrt n} \sum_{k=1}^n e^{- \left(\frac k{\sqrt n}\right)^2} & \small \color{#3D99F6} \text{Using Riemann sums:} \\ & = 2 \int_0^\infty e^{-x^2} dx & \small \color{#3D99F6} \lim_{n \to \infty} \sum_{k=a}^b f\left(\frac kn \right) = \lim_{n \to \infty} \int_{\frac an}^{\frac bn} f(x) \ dx \\ & = \sqrt \pi \text{ erf }(\infty) & \small \color{#3D99F6} \text{Error function erf }(z) = \frac 2{\sqrt \pi }\int_0^z e^{-t^2} dt \\ & = \boxed{\sqrt \pi} & \small \color{#3D99F6} \text{Since erf }(\infty) = 1 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...