Limit of a Definite Integral

Calculus Level 2

lim m 0 1 m π 2 π 2 + m cos ( x 2 ) d x = ? \large \lim_{m \to 0} \frac{1}{m} \int_{\sqrt{\frac{\pi}{2}}}^{\sqrt{\frac{\pi}{2}}+m} \cos (x^2) \ dx = ?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jan 27, 2019

L = lim m 0 1 m π 2 π 2 + m cos ( x 2 ) d x A 0/0 case, L’H o ˆ pital’s rule applies. = lim m 0 cos ( ( π 2 + m ) 2 ) 1 Differentiate up and down w.r.t. m . = cos ( π 2 ) 1 = 0 \begin{aligned} L & = \lim_{m \to 0} \frac 1m \int_{\sqrt{\frac \pi 2}}^{\sqrt{\frac \pi 2}+m} \cos (x^2) \ dx & \small \color{#3D99F6} \text{A 0/0 case, L'Hôpital's rule applies.} \\ & = \lim_{m \to 0} \frac {\cos \left(\left(\sqrt{\frac \pi 2}+m\right)^2\right)}1 & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. }m. \\ & = \frac {\cos \left(\frac \pi 2\right)}1 = \boxed 0 \end{aligned}


Reference: L'Hôpital's rule

@Chew-Seong Cheong please explain how it is a 0/0 case?

Raja the king - 2 years, 4 months ago

Log in to reply

Note that lim m 0 a a + m f ( x ) d x = 0 \displaystyle \lim_{m \to 0} \int_a^{a+m} f(x) \ dx = 0 and lim m 0 m = 0 \displaystyle \lim_{m \to 0} m = 0 . I missed out the 1 m \dfrac 1m earlier.

Chew-Seong Cheong - 2 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...