Limit of a Harmonic Sum

Calculus Level 5

lim n [ H n 1 2 n r = 1 n ( n r ) H r ] = ln m \large \lim_{n \to \infty} \left[ H_{n} - \dfrac{1}{2^n} \sum_{r=1}^{n} \dbinom{n}{r} H_{r} \right] = \ln m

If the equation above holds true, find m 2 m^2 .

Notation : H n H_n denotes the n th n^\text{th} harmonic number , H n = 1 + 1 2 + 1 3 + + 1 n H_n = 1 + \dfrac12 + \dfrac13 + \cdots + \dfrac1n .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let L n L_n be defined as follows:

L n = H n 1 2 n r = 1 n ( n r ) H r L_n = H_n - \frac{1}{2^n} \sum_{r=1}^{n} {n \choose r} H_r

So, we need to find lim n L n \lim_{n \to \infty} L_n

Now, using the integral representation of H k H_k and binomial theorem, L n = 0 1 1 x n 1 x d x 0 1 1 ( 1 + x 2 ) n 1 x d x = 0 1 ( 1 x 2 ) n ( 1 x ) n x d x ( by using x 1 x ) = 1 2 a 0 1 ( 1 x a ) n x d x d a = 1 2 0 1 a ( 1 x a ) n x d x d a = 1 2 n n + 1 1 a { 1 ( 1 1 a ) n + 1 } d a \begin{aligned} L_n &= \int_0^1 \frac{1-x^n}{1-x} \, dx - \int_0^1 \frac{1-\left(\frac{1+x}{2} \right)^n }{1-x} \, dx \\&= \int_0^1 \frac{\left(1-\frac{x}{2} \right)^n - (1-x)^n}{x} \, dx \quad (\text{by using } x \mapsto 1-x) \\&= \int_1^2 \frac{\partial}{\partial a} \int_0^1 \frac{\left( 1- \frac{x}{a} \right)^n}{x} \, dx \, da \\&= \int_1^2 \int_0^1 \frac{\partial}{\partial a} \frac{\left( 1- \frac{x}{a} \right)^n}{x} \, dx \, da \\&= \int_1^2 \frac{n}{n+1} \frac{1}{a} \left\{ 1- \left( 1- \frac{1}{a} \right)^{n+1} \right \} \, da\end{aligned}

Note that the integrand in the last line is dominated by 1 1 (in the relevant interval). Using dominated convergence, we have

lim n L n = 1 2 d a a = ln 2 \lim_{n \to \infty} L_n = \int_1^2 \frac{da}{a} = \ln \boxed{2}

0 1 1 ( 1 + x 2 ) n 1 x d x \displaystyle \ldots \int_0^1 \frac{1-\left(\frac{1+x}{2} \right)^n }{1-x} \, dx .

Can you prove that this is the integral representation of the binomial theorem?

Pi Han Goh - 4 years, 10 months ago

Log in to reply

I meant integral representation of H k H_k and binomial theorem .

That is, 1 2 n r = 0 n ( n r ) 0 1 1 x r 1 x d x = 1 2 n 0 1 1 1 x ( 2 n ( 1 + x ) n ) d x ( 1 + t ) n = r = 0 n ( n r ) t r ; t = 1 a n d t = x \begin{aligned} &\frac{1}{2^n} \sum_{r=0}^n {n \choose r} \int_0^1 \frac{1-x^r}{1-x} \, dx \\&= \frac{1}{2^n}\int_0^1 \frac{1}{1-x} (2^n-(1+x)^n )\, dx\quad \because (1+t)^n= \sum_{r=0}^{n} {n \choose r} t^r; t = 1 and t=x \end{aligned}

A Former Brilliant Member - 4 years, 10 months ago

Far better than my method.

Aditya Kumar - 4 years, 10 months ago
Mark Hennings
Jul 26, 2016

Since H n = k = 1 n ( 1 ) k 1 k ( n k ) H_n \; = \; \sum_{k=1}^n \frac{(-1)^{k-1}}{k}\binom{n}{k} we have r = 1 n ( n r ) H r = k = 1 n ( 1 ) k 1 k r = k n ( n r ) ( r k ) = k = 1 n ( 1 ) k 1 k 2 n k ( n k ) \sum_{r=1}^n \binom{n}{r}H_r \; = \; \sum_{k=1}^n \frac{(-1)^{k-1}}{k}\sum_{r=k}^n \binom{n}{r}\binom{r}{k} \; = \; \sum_{k=1}^n \frac{(-1)^{k-1}}{k}2^{n-k}\binom{n}{k} and hence L n = H n 2 n r = 1 n ( n r ) H r = k = 1 n ( 1 ) k 1 k [ 1 2 k ] ( n k ) = k = 1 n ( 1 ) k 1 ( n k ) 1 2 1 t k 1 d t = 1 2 1 1 ( 1 t ) n t d t = ln 2 1 2 1 ( 1 t ) n d t t \begin{array}{rcl} \displaystyle L_n \; = \; H_n - 2^{-n}\sum_{r=1}^n \binom{n}{r}H_r & = & \displaystyle \sum_{k=1}^n \frac{(-1)^{k-1}}{k}\big[1 - 2^{-k}\big]\binom{n}{k} \; = \; \sum_{k=1}^n (-1)^{k-1} \binom{n}{k} \int_{\frac12}^1 t^{k-1}\,dt \\ & = & \displaystyle \int_{\frac12}^1 \frac{1 - (1-t)^n}{t}\,dt \; = \; \ln2 - \int_{\frac12}^1 (1-t)^n\frac{dt}{t} \end{array} and hence L n ln 2 ln 2 2 n \left|L_n - \ln2\right| \; \le\; \frac{\ln2}{2^n} Thus the answer is 2 2 = 4 2^2 = \boxed{4} , but we also see that the rate of convergence is exponential.

(+1) Nice solution! I have found a more general identity. It can be shown that r = 1 n ( n r ) H r = 2 n ( H n r = 1 n 1 r 2 r ) \sum_{r=1}^{n} \dbinom{n}{r} H_{r} = 2^{n}\left( H_{n} - \sum_{r=1}^{n} \dfrac{1}{r 2^r} \right) and the result follows.

Ishan Singh - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...